Results 1 
1 of
1
Incomputability, Emergence and the Turing Universe
"... Amongst the huge literature concerning emergence, reductionism and mechanism, there is a role for analysis of the underlying mathematical constraints. Much of the speculation, confusion, controversy and descriptive verbiage might be clarified via suitable modelling and theory. The key ingredients we ..."
Abstract

Cited by 2 (1 self)
 Add to MetaCart
(Show Context)
Amongst the huge literature concerning emergence, reductionism and mechanism, there is a role for analysis of the underlying mathematical constraints. Much of the speculation, confusion, controversy and descriptive verbiage might be clarified via suitable modelling and theory. The key ingredients we bring to this project are the mathematical notions of definability and invariance, a computability theoretic framework in a realworld context, and within that, the modelling of basic causal environments via Turing’s 1939 notion of interactive computation over a structure described in terms of reals. Useful outcomes are: a refinement of what one understands to be a causal relationship, including nonmechanistic, irreversible causal relationships; an appreciation of how the mathematically simple origins of incomputability in definable hierarchies are materialised in the real world; and an understanding of the powerful explanatory role of current computability theoretic developments. The theme of this article concerns the way in which mathematics can structure everyday discussions around a range of important issues — and can also reinforce intuitions about theoretical links between different aspects of the real world. This fits with the widespread sense of excitement and expectation felt in many fields — and of a corresponding confusion — and of a tension characteristic of a Kuhnian paradigm shift. What we have below can be seen as tentative steps towards the sort of mathematical modelling needed for such a shift to be completed. In section 1, we outline the decisive role mathematics played in the birth of modern science; and how, more recently, it has helped us towards a better understanding of the nature and limitations of the scientific enterprise. In section 2, we review how the mathematics brings out inherent contradictions in the Laplacian model of scientific activity. And we look at some of the approaches to dealing