Results 1  10
of
58
Application of theorem proving to problem solving
, 1969
"... This paper shows how an extension of the resolution proof procedure can be used to construct problem solutions. The extended proof procedure can solve problems involving state transformations. The paper explores several alternate problem representations and provides a discussion of solutions to samp ..."
Abstract

Cited by 225 (1 self)
 Add to MetaCart
This paper shows how an extension of the resolution proof procedure can be used to construct problem solutions. The extended proof procedure can solve problems involving state transformations. The paper explores several alternate problem representations and provides a discussion of solutions to sample problems including the "Monkey and Bananas " puzzle and the 'Tower of Hanoi " puzzle. The paper exhibits solutions to these problems obtained by QA3, a computer program bused on these theoremproving methods. In addition, the paper shows how QA3 can write simple computer programs and can solve practical problems for a simple robot. Key Words: Theorem proving, resolution, problem solving, automatic programming, program writing, robots, state transformations, question answering. Automatic theorem proving by the resolution proof procedure § represents perhaps the most powerful known method for automatically determining the validity of a statement of firstorder logic. In an earlier paper Green and Raphael" illustrated how an extended resolution procedure can be used as a question answerer—e.g., if the statement (3x)P(x) can be shown to follow from a set of axioms by the resolution proof procedure, then the extended proof procedure will find or construct an x that satisfies P(x). This earlier paper (1) showed how one can axiomatize simple questionanswering subjects, (2) described a questionanswering program called QA2 based on this procedure, and (3) presented examples of simple questionanswering dialogues with QA2. In a more recent paper " the author (1) presents the answer construction method in detail and proves its correctness, (2) describes the latest version of the program, QA3, and (3) introduces statetransformation methods into the constructive proof formalism. In addition to the questionanswering applications illustrated in these earlier papers, QA3 has been used as an SRI robot 4 problem solver and as an automatic
Algorithms for the Satisfiability (SAT) Problem: A Survey
 DIMACS Series in Discrete Mathematics and Theoretical Computer Science
, 1996
"... . The satisfiability (SAT) problem is a core problem in mathematical logic and computing theory. In practice, SAT is fundamental in solving many problems in automated reasoning, computeraided design, computeraided manufacturing, machine vision, database, robotics, integrated circuit design, compute ..."
Abstract

Cited by 127 (3 self)
 Add to MetaCart
. The satisfiability (SAT) problem is a core problem in mathematical logic and computing theory. In practice, SAT is fundamental in solving many problems in automated reasoning, computeraided design, computeraided manufacturing, machine vision, database, robotics, integrated circuit design, computer architecture design, and computer network design. Traditional methods treat SAT as a discrete, constrained decision problem. In recent years, many optimization methods, parallel algorithms, and practical techniques have been developed for solving SAT. In this survey, we present a general framework (an algorithm space) that integrates existing SAT algorithms into a unified perspective. We describe sequential and parallel SAT algorithms including variable splitting, resolution, local search, global optimization, mathematical programming, and practical SAT algorithms. We give performance evaluation of some existing SAT algorithms. Finally, we provide a set of practical applications of the sat...
A Proof Procedure Using Connection Graphs
 JACM
, 1975
"... ABSTRACT. Various deficiencies of resolution systems are investigated and a new theoremproving system designed to remedy those deficiencms is presented The system is notable for eliminating redundancies present in SLresolutlon, for incorporating preprocessing procedures, for liberahzing the order ..."
Abstract

Cited by 76 (5 self)
 Add to MetaCart
ABSTRACT. Various deficiencies of resolution systems are investigated and a new theoremproving system designed to remedy those deficiencms is presented The system is notable for eliminating redundancies present in SLresolutlon, for incorporating preprocessing procedures, for liberahzing the order in which subgoals can be activated, for incorporating multidirectmnal searches, and for giving immediate access to pairs of clauses which resolve Examples of how the new system copes with the defic2encies of other theoremproving systems are chosen from the areas of predicate logic programming and language parsing. The paper emphasizes the historical development of the new system, beginning as a supplement to SLresolution in the form of classificatmn trees and incorporating an analogue of the Waltz algorithm for picture Interpretation The paper ends with a discussion of the opportunities for using lookahead to guide the search for proofs
Otter: The CADE13 Competition Incarnations
 JOURNAL OF AUTOMATED REASONING
, 1997
"... This article discusses the two incarnations of Otter entered in the CADE13 Automated Theorem Proving Competition. Also presented are some historical background, a summary of applications that have led to new results in mathematics and logic, and a general discussion of Otter. ..."
Abstract

Cited by 44 (3 self)
 Add to MetaCart
This article discusses the two incarnations of Otter entered in the CADE13 Automated Theorem Proving Competition. Also presented are some historical background, a summary of applications that have led to new results in mathematics and logic, and a general discussion of Otter.
Lightweight relevance filtering for machinegenerated resolution problems
 In ESCoR: Empirically Successful Computerized Reasoning
, 2006
"... Irrelevant clauses in resolution problems increase the search space, making it hard to find proofs in a reasonable time. Simple relevance filtering methods, based on counting function symbols in clauses, improve the success rate for a variety of automatic theorem provers and with various initial set ..."
Abstract

Cited by 33 (8 self)
 Add to MetaCart
Irrelevant clauses in resolution problems increase the search space, making it hard to find proofs in a reasonable time. Simple relevance filtering methods, based on counting function symbols in clauses, improve the success rate for a variety of automatic theorem provers and with various initial settings. We have designed these techniques as part of a project to link automatic theorem provers to the interactive theorem prover Isabelle. They should be applicable to other situations where the resolution problems are produced mechanically and where completeness is less important than achieving a high success rate with limited processor time. 1
Automation for interactive proof: First prototype
 Information and Computation
"... Interactive theorem provers require too much effort from their users. We have been developing a system in which Isabelle users obtain automatic support from automatic theorem provers (ATPs) such as Vampire and SPASS. An ATP is invoked at suitable points in the interactive session, and any proof foun ..."
Abstract

Cited by 29 (10 self)
 Add to MetaCart
Interactive theorem provers require too much effort from their users. We have been developing a system in which Isabelle users obtain automatic support from automatic theorem provers (ATPs) such as Vampire and SPASS. An ATP is invoked at suitable points in the interactive session, and any proof found is given to the user in a window displaying an Isar proof script. There are numerous differences between Isabelle (polymorphic higherorder logic with type classes, natural deduction rule format) and classical ATPs (firstorder, untyped, clause form). Many of these differences have been bridged, and a working prototype that uses background processes already provides much of the desired functionality. 1
The Applications of Theorem Proving to QuestionAnswering Systems
, 1969
"... This paper shows how a questionanswering system can use firstorder logic as its language and an automatic theorem prover, based upon the resolution inference principle, as its deductive mechanism. The resolution proof procedure is extended to a constructive proof procedure. An answer construction ..."
Abstract

Cited by 27 (0 self)
 Add to MetaCart
This paper shows how a questionanswering system can use firstorder logic as its language and an automatic theorem prover, based upon the resolution inference principle, as its deductive mechanism. The resolution proof procedure is extended to a constructive proof procedure. An answer construction algorithm is given whereby the system is able not only to produce yes or no answers but also to find or construct an object satisfying a specified condition. A working computer program, QA3, based on these ideas, is described. The performance of the program, illustrated by extended examples, compares favorably with several other questionanswering programs. Methods are presented for solving state transformation problems. In addition to questionanswering, the program can do automatic programming
The Search Efficiency of Theorem Proving Strategies: An Analytical Comparison
, 1994
"... We analyze the search efficiency of a number of common refutational theorem proving strategies for firstorder logic. Search efficiency is concerned with the total number of proofs and partial proofs generated, rather than with the sizes of the proofs. We show that most common strategies produce sea ..."
Abstract

Cited by 22 (3 self)
 Add to MetaCart
We analyze the search efficiency of a number of common refutational theorem proving strategies for firstorder logic. Search efficiency is concerned with the total number of proofs and partial proofs generated, rather than with the sizes of the proofs. We show that most common strategies produce search spaces of exponential size even on simple sets of clauses, or else are not sensitive to the goal. However, clause linking, which uses a reduction to propositional calculus, has behavior that is more favorable in some respects, a property that it shares with methods that cache subgoals. A strategy which is of interest for termrewriting based theorem proving is the Aordering strategy, and we discuss it in some detail. We show some advantages of Aordering over other strategies, which may help to explain its efficiency in practice. We also point out some of its combinatorial inefficiencies, especially in relation to goalsensitivity and irrelevant clauses. In addition, SLDreso...
Extending Semantic Resolution via Automated Model Building: applications
 In Proceeding of IJCAI'95
, 1995
"... An extension of semantic resolution is proposed. It is also an extension of the set of support as it can be considered as a particular case of semantic resolution. It is proved sound and refutationally complete. The extension is based on our former method for model building. The approach uses constr ..."
Abstract

Cited by 16 (9 self)
 Add to MetaCart
An extension of semantic resolution is proposed. It is also an extension of the set of support as it can be considered as a particular case of semantic resolution. It is proved sound and refutationally complete. The extension is based on our former method for model building. The approach uses constrained clauses (or cclauses), i.e. couples [[clause : constraint]]. Two important new features are introduced with respect to semantic resolution. Firstly, the method builds its own (finite or infinite) models to guide the search or to stop it if the initial set of clauses is satisfiable. Secondly, instead of evaluating a clause in an interpretation it imposes conditions (coded in its rules) to force a cclause not to be evaluated to true in the interpretation it builds. The extension is limited in this paper to binary resolution but generalizing it to naryresolution should be straightforward. The prover implementing our method is an extension of OTTER and compares advantageously with it ...