Results 1 
7 of
7
Global minimization using an Augmented Lagrangian method with variable lowerlevel constraints
, 2007
"... A novel global optimization method based on an Augmented Lagrangian framework is introduced for continuous constrained nonlinear optimization problems. At each outer iteration k the method requires the εkglobal minimization of the Augmented Lagrangian with simple constraints, where εk → ε. Global c ..."
Abstract

Cited by 21 (1 self)
 Add to MetaCart
A novel global optimization method based on an Augmented Lagrangian framework is introduced for continuous constrained nonlinear optimization problems. At each outer iteration k the method requires the εkglobal minimization of the Augmented Lagrangian with simple constraints, where εk → ε. Global convergence to an εglobal minimizer of the original problem is proved. The subproblems are solved using the αBB method. Numerical experiments are presented.
ADVANCES IN CANONICAL DUALITY THEORY WITH APPLICATIONS TO GLOBAL OPTIMIZATION
 FOCAPO 2008
, 2008
"... Canonical duality theory is a potentially powerful methodology, which can be used to solve a wide class of discrete and continuous global optimization problems. This paper presents a brief review and recent developments of this theory with applications to some wellknow problems including polynomial ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
Canonical duality theory is a potentially powerful methodology, which can be used to solve a wide class of discrete and continuous global optimization problems. This paper presents a brief review and recent developments of this theory with applications to some wellknow problems including polynomial minimization, mixed integer and fractional programming, nonconvex minimization with nonconvex quadratic constraints, etc. Results shown that under certain conditions, these difficult problems can be solved by deterministic methods within polynomial times, and the NPhard problems can be transformed to a minimal stationary problem in dual space. Concluding remarks and open problems are presented in the end.
Global Nonlinear Programming with possible infeasibility and finite termination
, 2012
"... In a recent paper, Birgin, Floudas and Martínez introduced an augmented Lagrangian method for global optimization. In their approach, augmented Lagrangian subproblems are solved using the αBB method and convergence to global minimizers was obtained assuming feasibility of the original problem. In th ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
In a recent paper, Birgin, Floudas and Martínez introduced an augmented Lagrangian method for global optimization. In their approach, augmented Lagrangian subproblems are solved using the αBB method and convergence to global minimizers was obtained assuming feasibility of the original problem. In the present research, the algorithm mentioned above will be improved in several crucial aspects. On the one hand, feasibility of the problem will not be required. Possible infeasibility will be detected in finite time by the new algorithms and optimal infeasibility results will be proved. On the other hand, finite termination results thatguaranteeoptimalityand/orfeasibilityuptoanyrequiredprecisionwillbeprovided. An adaptive modification in which subproblem tolerances depend on current feasibility and complementarity will also be given. The adaptive algorithm allows the augmented Lagrangian subproblems to be solved without requiring unnecessary potentially high precisions in the intermediate steps of the method, which improves the overall efficiency. Experiments showing how the new algorithms and results are related to practical computations will be given.
DOI 10.1007/s108980099399x Author Proof 1 2 3
"... Solutions and optimality criteria for nonconvex constrained global optimization problems with connections between canonical and Lagrangian duality ..."
Abstract
 Add to MetaCart
Solutions and optimality criteria for nonconvex constrained global optimization problems with connections between canonical and Lagrangian duality
Proceedings Foundations of ComputerAided Process Operations (FOCAPO 2008) ADVANCES IN CANONICAL DUALITY THEORY WITH APPLICATIONS TO GLOBAL OPTIMIZATION Abstract
"... Canonical duality theory is a potentially powerful methodology, which can be used to solve a wide class of discrete and continuous global optimization problems. This paper presents a brief review and recent developments of this theory with applications to some wellknow problems including polynomial ..."
Abstract
 Add to MetaCart
Canonical duality theory is a potentially powerful methodology, which can be used to solve a wide class of discrete and continuous global optimization problems. This paper presents a brief review and recent developments of this theory with applications to some wellknow problems including polynomial minimization, mixed integer and fractional programming, nonconvex minimization with nonconvex quadratic constraints, etc. Results shown that under certain conditions, these difficult problems can be solved by deterministic methods within polynomial times, and NPhard discrete optimization problems can be transformed to certain minimal stationary problems in continuous space. Concluding remarks and open problems are presented in the end.
Augmented Lagrangians with possible infeasibility and finite termination for global nonlinear programming
, 2012
"... In a recent paper, Birgin, Floudas and Martínez introduced an augmented Lagrangian method for global optimization. In their approach, augmented Lagrangian subproblems are solved using the αBB method and convergence to global minimizers was obtained assuming feasibility of the original problem. In th ..."
Abstract
 Add to MetaCart
In a recent paper, Birgin, Floudas and Martínez introduced an augmented Lagrangian method for global optimization. In their approach, augmented Lagrangian subproblems are solved using the αBB method and convergence to global minimizers was obtained assuming feasibility of the original problem. In the present research, the algorithm mentioned above will be improved in several crucial aspects. On the one hand, feasibility of the problem will not be required. Possible infeasibility will be detected in finite time by the new algorithms and optimal infeasibility results will be proved. On the other hand, finite termination results that guarantee optimality and/or feasibility up to any required precision will be provided. An adaptive modification in which subproblem tolerances depend on current feasibility and complementarity will also be given. The adaptive algorithm allows the augmented Lagrangian subproblems to be solved without requiring unnecessary potentially high precisions in the intermediate steps of the method, which improves the overall efficiency. Experiments showing how the new algorithms and results are related to practical computations will be given.
Global minimization using an Augmented Lagrangian method with variable lowerlevel constraints
, 2006
"... A novel global optimization method based on an Augmented Lagrangian framework is introduced for continuous constrained nonlinear optimization problems. At each outer iteration the method requires the εglobal minimization of the Augmented Lagrangian with simple constraints. Global convergence to an ..."
Abstract
 Add to MetaCart
A novel global optimization method based on an Augmented Lagrangian framework is introduced for continuous constrained nonlinear optimization problems. At each outer iteration the method requires the εglobal minimization of the Augmented Lagrangian with simple constraints. Global convergence to an εglobal minimizer of the original problem is proved. The subproblems are solved using the αBB method. Numerical experiments are presented. Key words: deterministic global optimization, Augmented Lagrangians, nonlinear programming, algorithms, numerical experiments. 1