Results 1 
3 of
3
The Practice of Finitism: Epsilon Calculus and Consistency Proofs in Hilbert's Program
, 2001
"... . After a brief flirtation with logicism in 19171920, David Hilbert proposed his own program in the foundations of mathematics in 1920 and developed it, in concert with collaborators such as Paul Bernays and Wilhelm Ackermann, throughout the 1920s. The two technical pillars of the project were the ..."
Abstract

Cited by 5 (3 self)
 Add to MetaCart
. After a brief flirtation with logicism in 19171920, David Hilbert proposed his own program in the foundations of mathematics in 1920 and developed it, in concert with collaborators such as Paul Bernays and Wilhelm Ackermann, throughout the 1920s. The two technical pillars of the project were the development of axiomatic systems for ever stronger and more comprehensive areas of mathematics and finitistic proofs of consistency of these systems. Early advances in these areas were made by Hilbert (and Bernays) in a series of lecture courses at the University of Gttingen between 1917 and 1923, and notably in Ackermann 's dissertation of 1924. The main innovation was the invention of the ecalculus, on which Hilbert's axiom systems were based, and the development of the esubstitution method as a basis for consistency proofs. The paper traces the development of the "simultaneous development of logic and mathematics" through the enotation and provides an analysis of Ackermann's consisten...
Gödel on computability
"... Around 1950, both Gödel and Turing wrote papers for broader audiences. 1 Gödel drew in his 1951 dramatic philosophical conclusions from the general formulation of his second incompleteness theorem. These conclusions concerned the nature of mathematics and the human mind. The general formulation of t ..."
Abstract

Cited by 5 (0 self)
 Add to MetaCart
Around 1950, both Gödel and Turing wrote papers for broader audiences. 1 Gödel drew in his 1951 dramatic philosophical conclusions from the general formulation of his second incompleteness theorem. These conclusions concerned the nature of mathematics and the human mind. The general formulation of the second theorem was explicitly based on Turing’s 1936 reduction of finite procedures to machine computations. Turing gave in his 1954 an understated analysis of finite procedures in terms of Post production systems. This analysis, prima facie quite different from that given in 1936, served as the basis for an exposition of various unsolvable problems. Turing had addressed issues of mentality and intelligence in contemporaneous essays, the best known of which is of course Computing machinery and intelligence. Gödel’s and Turing’s considerations from this period intersect through their attempt, on the one hand, to analyze finite, mechanical procedures and, on the other hand, to approach mental phenomena in a scientific way. Neuroscience or brain science was an important component of the latter for both: Gödel’s remarks in the Gibbs Lecture as well as in his later conversations with Wang and Turing’s Intelligent Machinery can serve as clear evidence for that. 2 Both men were convinced that some mental processes are not mechanical, in the sense that Turing machines cannot mimic them. For Gödel, such processes were to be found in mathematical experience and he was led to the conclusion that mind is separate from matter. Turing simply noted that for a machine or a brain it is not enough to be converted into a universal (Turing) machine in order to become intelligent: “discipline”, the characteristic