Results 11  20
of
296
Characterization of complex networks: A survey of measurements
 Advances in Physics
"... Each complex network (or class of networks) presents specific topological features which characterize its connectivity and highly influence the dynamics and function of processes executed on the network. The analysis, discrimination, and synthesis of complex networks therefore rely on the use of mea ..."
Abstract

Cited by 89 (7 self)
 Add to MetaCart
Each complex network (or class of networks) presents specific topological features which characterize its connectivity and highly influence the dynamics and function of processes executed on the network. The analysis, discrimination, and synthesis of complex networks therefore rely on the use of measurements capable of expressing the most relevant topological features. This article presents a survey of such measurements. It includes general considerations about complex network characterization, a brief review of the principal models, and the presentation of the main existing measurements organized into classes. Special attention is given to relating complex network analysis with the areas of pattern recognition and feature selection, as well as on surveying some concepts and measurements from traditional graph theory which are potentially useful for complex network research. Depending on the network and the analysis task one has in mind, a specific set of features may be chosen. It is hoped that the present survey will help the
Musical instrument identification: A patternrecognition approach
, 1998
"... A statistical patternrecognition technique was applied to the classification of musical instrument tones within a taxonomic hierarchy. Perceptually salient acoustic features related to the physical properties of source excitation and resonance structurewere measured from the output of an audi ..."
Abstract

Cited by 81 (1 self)
 Add to MetaCart
A statistical patternrecognition technique was applied to the classification of musical instrument tones within a taxonomic hierarchy. Perceptually salient acoustic features related to the physical properties of source excitation and resonance structurewere measured from the output of an auditory model (the loglag correlogram) for 1023 isolated tones over the full pitch ranges of 15 orchestral instruments. The data set included examples from the string (bowed and plucked), woodwind (single, double, and air reed), and brass families. Using 70%/30% splits between training and test data, maximum a posteriori classifiers were constructed based on Gaussian models arrived at through Fisher multiplediscriminant analysis. The classifiers distinguished transient from continuant tones with approximately 99% correct performance. Instrument families were identified with approximately 90% performance, and individual instruments were identified with an overall success rate of appr...
Semisupervised Learning by Entropy Minimization
"... We consider the semisupervised learning problem, where a decision rule is to be learned from labeled and unlabeled data. In this framework, we motivate minimum entropy regularization, which enables to incorporate unlabeled data in the standard supervised learning. This regularizer can be applied to ..."
Abstract

Cited by 81 (2 self)
 Add to MetaCart
We consider the semisupervised learning problem, where a decision rule is to be learned from labeled and unlabeled data. In this framework, we motivate minimum entropy regularization, which enables to incorporate unlabeled data in the standard supervised learning. This regularizer can be applied to any model of posterior probabilities. Our approach provides a new motivation for some existing semisupervised learning algorithms which are particular or limiting instances of minimum entropy regularization. A series of experiments illustrates that the proposed solution benefits from unlabeled data. The method challenges mixture models when the data are sampled from the distribution class spanned by the generative model. The performances are definitely in favor of minimum entropy regularization when generative models are misspecified, and the weighting of unlabeled data provides robustness to the violation of the “cluster assumption”. Finally, we also illustrate that the method can be far superior to manifold learning in high dimension spaces, and also when the manifolds are generated by moving examples along the discriminating directions.
SoundSource Recognition: A Theory and Computational Model
, 1999
"... The ability of a normal human listener to recognize objects in the environment from only the sounds they produce is extraordinarily robust with regard to characteristics of the acoustic environment and of other competing sound sources. In contrast, computer systems designed to recognize sound source ..."
Abstract

Cited by 74 (0 self)
 Add to MetaCart
The ability of a normal human listener to recognize objects in the environment from only the sounds they produce is extraordinarily robust with regard to characteristics of the acoustic environment and of other competing sound sources. In contrast, computer systems designed to recognize sound sources function precariously, breaking down whenever the target sound is degraded by reverberation, noise, or competing sounds. Robust listening requires extensive contextual knowledge, but the potential contribution of soundsource recognition to the process of auditory scene analysis has largely been neglected by researchers building computational models of the scene analysis process. This thesis proposes a theory of soundsource recognition, casting recognition as a process of gathering information to enable the listener to make inferences about
Adaptive Metric Nearest Neighbor Classification
 IEEE Transactions on Pattern Analysis and Machine Intelligence
, 2000
"... Nearest neighbor classification assumes locally constant class conditional probabilities. This assumption becomes invalid in high dimensions with finite samples due to the curse of dimensionality. Severe bias can be introduced under these conditions when using the nearest neighbor rule. We propose a ..."
Abstract

Cited by 74 (4 self)
 Add to MetaCart
Nearest neighbor classification assumes locally constant class conditional probabilities. This assumption becomes invalid in high dimensions with finite samples due to the curse of dimensionality. Severe bias can be introduced under these conditions when using the nearest neighbor rule. We propose a locally adaptive nearest neighbor classification method to try to minimize bias. We use a Chisquared distance analysis to compute a flexible metric for producing neighborhoods that are highly adaptive to query locations. Neighborhoods are elongated along less relevant feature dimensions and constricted along most influential ones. As a result, the class conditional probabilities tend to be smoother in the modified neighborhoods, whereby better classification performance can be achieved. The efficacy of our method is validated and compared against other techniques using a variety of simulated and real world data. 1 Introduction In a classification problem, we are given J classes and N tra...
On the Approximability of Minimizing Nonzero Variables Or Unsatisfied Relations in Linear Systems
, 1997
"... We investigate the computational complexity of two closely related classes of combinatorial optimization problems for linear systems which arise in various fields such as machine learning, operations research and pattern recognition. In the first class (Min ULR) one wishes, given a possibly infeasib ..."
Abstract

Cited by 71 (4 self)
 Add to MetaCart
We investigate the computational complexity of two closely related classes of combinatorial optimization problems for linear systems which arise in various fields such as machine learning, operations research and pattern recognition. In the first class (Min ULR) one wishes, given a possibly infeasible system of linear relations, to find a solution that violates as few relations as possible while satisfying all the others. In the second class (Min RVLS) the linear system is supposed to be feasible and one looks for a solution with as few nonzero variables as possible. For both Min ULR and Min RVLS the four basic types of relational operators =, , ? and 6= are considered. While Min RVLS with equations was known to be NPhard in [27], we established in [2, 5] that Min ULR with equalities and inequalities are NPhard even when restricted to homogeneous systems with bipolar coefficients. The latter problems have been shown hard to approximate in [8]. In this paper we determine strong bou...
Statistical Fraud Detection: A Review
, 2002
"... Fraud is increasing dramatically with the expansion of modern technology and the global superhighways of communication, resulting in the loss of billions of dollars worldwide each year. Although prevention technologies are the best way of reducing fraud, fraudsters are adaptive and, given time, will ..."
Abstract

Cited by 66 (0 self)
 Add to MetaCart
Fraud is increasing dramatically with the expansion of modern technology and the global superhighways of communication, resulting in the loss of billions of dollars worldwide each year. Although prevention technologies are the best way of reducing fraud, fraudsters are adaptive and, given time, will usually find ways to circumvent such measures. Methodologies for the detection of fraud are essential if we are to catch fraudsters once fraud prevention has failed. Statistics and machine learning provide effective technologies for fraud detection and have been applied successfully to detect activities such as money laundering, ecommerce credit card fraud, telecommunication fraud, and computer intrusion, to name but a few. We describe the tools available for statistical fraud detection and the areas in which fraud detection technologies are most used. Keywords: Fraud detection, fraud prevention, statistics, machine learning, money laundering, computer intrusion, ecommerce, credit cards, telecommunications. Author's note: Richard J. Bolton is Research Associate and David J. Hand Professor of Statistics, Department of Mathematics, Imperial College, 180 Queen's Gate, London SW7 2BZ, UK. Contact email: {r.bolton, d.j.hand @ic.ac.uk} 1.
Comparison of statistical methods for classification of ovarian cancer using mass spectrometry data
 Bioinformatics
, 2003
"... ..."
Bayesian Analysis of Mixture Models with an Unknown Number of Components  an alternative to reversible jump methods
, 1998
"... Richardson and Green (1997) present a method of performing a Bayesian analysis of data from a finite mixture distribution with an unknown number of components. Their method is a Markov Chain Monte Carlo (MCMC) approach, which makes use of the "reversible jump" methodology described by Green (1995). ..."
Abstract

Cited by 61 (0 self)
 Add to MetaCart
Richardson and Green (1997) present a method of performing a Bayesian analysis of data from a finite mixture distribution with an unknown number of components. Their method is a Markov Chain Monte Carlo (MCMC) approach, which makes use of the "reversible jump" methodology described by Green (1995). We describe an alternative MCMC method which views the parameters of the model as a (marked) point process, extending methods suggested by Ripley (1977) to create a Markov birthdeath process with an appropriate stationary distribution. Our method is easy to implement, even in the case of data in more than one dimension, and we illustrate it on both univariate and bivariate data. Keywords: Bayesian analysis, Birthdeath process, Markov process, MCMC, Mixture model, Model Choice, Reversible Jump, Spatial point process 1 Introduction Finite mixture models are typically used to model data where each observation is assumed to have arisen from one of k groups, each group being suitably modelle...