Results 1  10
of
17
General logical metatheorems for functional analysis
, 2008
"... In this paper we prove general logical metatheorems which state that for large classes of theorems and proofs in (nonlinear) functional analysis it is possible to extract from the proofs effective bounds which depend only on very sparse local bounds on certain parameters. This means that the bounds ..."
Abstract

Cited by 45 (26 self)
 Add to MetaCart
(Show Context)
In this paper we prove general logical metatheorems which state that for large classes of theorems and proofs in (nonlinear) functional analysis it is possible to extract from the proofs effective bounds which depend only on very sparse local bounds on certain parameters. This means that the bounds are uniform for all parameters meeting these weak local boundedness conditions. The results vastly generalize related theorems due to the second author where the global boundedness of the underlying metric space (resp. a convex subset of a normed space) was assumed. Our results treat general classes of spaces such as metric, hyperbolic, CAT(0), normed, uniformly convex and inner product spaces and classes of functions such as nonexpansive, HölderLipschitz, uniformly continuous, bounded and weakly quasinonexpansive ones. We give several applications in the area of metric fixed point theory. In particular, we show that the uniformities observed in a number of recently found effective bounds (by proof theoretic analysis) can be seen as instances of our general logical results.
A quantitative version of a theorem due to BorweinReichShafrir
 Numerical Functional Analysis and Optimization
, 2000
"... We give a quantitative analysis of a result due to Borwein, Reich and Shafrir on the asymptotic behaviour of the general KrasnoselskiMann iteration for nonexpansive selfmappings of convex sets in arbitrary normed spaces. Besides providing explicit bounds we also get new qualitative results concerni ..."
Abstract

Cited by 25 (14 self)
 Add to MetaCart
(Show Context)
We give a quantitative analysis of a result due to Borwein, Reich and Shafrir on the asymptotic behaviour of the general KrasnoselskiMann iteration for nonexpansive selfmappings of convex sets in arbitrary normed spaces. Besides providing explicit bounds we also get new qualitative results concerning the independence of the rate of convergence of the norm of that iteration from various input data. In the special case of bounded convex sets, where by wellknown results of Ishikawa, Edelstein/O'Brian and Goebel/Kirk the norm of the iteration converges to zero, we obtain uniform bounds which do not depend on the starting point of the iteration and the nonexpansive function, but only depend on the error #, an upper bound on the diameter of C and some very general information on the sequence of scalars # k used in the iteration. Only in the special situation, where # k := # is constant, uniform bounds were known in that bounded case. For the unbounded case, no quantitative information was ...
A quadratic rate of asymptotic regularity for CAT(0)spaces
, 2005
"... In this paper we obtain a quadratic bound on the rate of asymptotic regularity for the KrasnoselskiMann iterations of nonexpansive mappings in CAT(0)spaces, whereas previous results guarantee only exponential bounds. The method we use is to extend to the more general setting of uniformly convex hy ..."
Abstract

Cited by 25 (4 self)
 Add to MetaCart
In this paper we obtain a quadratic bound on the rate of asymptotic regularity for the KrasnoselskiMann iterations of nonexpansive mappings in CAT(0)spaces, whereas previous results guarantee only exponential bounds. The method we use is to extend to the more general setting of uniformly convex hyperbolic spaces a quantitative version of a strengthening of Groetsch’s theorem obtained by Kohlenbach using methods from mathematical logic (socalled “proof mining”).
On the computational content of the Krasnoselski and Ishikawa fixed point theorems
, 2000
"... This paper is a case study in proof mining applied to noneffective proofs in nonlinear functional analysis. More specifically, we are concerned with the fixed point theory of nonexpansive selfmappings f of convex sets C in normed spaces. We study the Krasnoselski iteration as well as more general ..."
Abstract

Cited by 13 (10 self)
 Add to MetaCart
This paper is a case study in proof mining applied to noneffective proofs in nonlinear functional analysis. More specifically, we are concerned with the fixed point theory of nonexpansive selfmappings f of convex sets C in normed spaces. We study the Krasnoselski iteration as well as more general socalled KrasnoselskiMann iterations. These iterations converge to fixed points of f under certain compactness conditions. But, as we show, already for uniformly convex spaces in general no bound on the rate of convergence can be computed uniformly in f . This is related to the nonuniqueness of fixed points. However, the iterations yield even without any compactness assumption and for arbitrary normed spaces approximate fixed points of arbitrary quality for bounded C (asymptotic regularity, Ishikawa 1976). We apply proof theoretic techniques (developed in previous papers of us) to noneffective proofs of this regularity and extract effective uniform bounds on the rate of the asymptotic re...
Rates of Asymptotic Regularity for Halpern Iterations of Nonexpansive Mappings
, 2008
"... In this paper we obtain new effective results on the Halpern iterations of nonexpansive mappings using methods from mathematical logic or, more specifically, prooftheoretic techniques. We give effective rates of asymptotic regularity for the Halpern iterations of nonexpansive selfmappings of nonemp ..."
Abstract

Cited by 7 (3 self)
 Add to MetaCart
In this paper we obtain new effective results on the Halpern iterations of nonexpansive mappings using methods from mathematical logic or, more specifically, prooftheoretic techniques. We give effective rates of asymptotic regularity for the Halpern iterations of nonexpansive selfmappings of nonempty convex sets in normed spaces. The paper presents another case study in the project of proof mining, which is concerned with the extraction of effective uniform bounds from (primafacie) ineffective proofs.
Nonexpansive iterations in uniformly convex Whyperbolic spaces
, 2008
"... We propose the class of uniformly convex Whyperbolic spaces with monotone modulus of uniform convexity (UCWhyperbolic spaces for short) as an appropriate setting for the study of nonexpansive iterations. UCWhyperbolic spaces are a natural generalization both of uniformly convex normed spaces and ..."
Abstract

Cited by 5 (0 self)
 Add to MetaCart
We propose the class of uniformly convex Whyperbolic spaces with monotone modulus of uniform convexity (UCWhyperbolic spaces for short) as an appropriate setting for the study of nonexpansive iterations. UCWhyperbolic spaces are a natural generalization both of uniformly convex normed spaces and CAT(0)spaces. Furthermore, we apply proof mining techniques to get effective rates of asymptotic regularity for Ishikawa iterations of nonexpansive selfmappings of closed convex subsets in UCWhyperbolic spaces. These effective results are new even for uniformly convex Banach spaces.
Proof mining in Rtrees and hyperbolic spaces
, 2008
"... This paper is part of the general project of proof mining, developed by Kohlenbach. By ”proof mining ” we mean the logical analysis of mathematical proofs with the aim of extracting new numerically relevant information hidden in the proofs. We present logical metatheorems for classes of spaces from ..."
Abstract

Cited by 3 (1 self)
 Add to MetaCart
This paper is part of the general project of proof mining, developed by Kohlenbach. By ”proof mining ” we mean the logical analysis of mathematical proofs with the aim of extracting new numerically relevant information hidden in the proofs. We present logical metatheorems for classes of spaces from functional analysis and hyperbolic geometry, like Gromov hyperbolic spaces, Rtrees and uniformly convex hyperbolic spaces. Our theorems are adaptations to these structures of previous metatheorems of Gerhardy and Kohlenbach, and they guarantee apriori, under very general logical conditions, the existence of uniform bounds. We give also an application in nonlinear functional analysis, more specifically in metric fixedpoint theory. Thus, we show that the uniform bound on the rate of asymptotic regularity for the KrasnoselskiMann iterations of nonexpansive mappings in uniformly convex hyperbolic spaces obtained in a previous paper is an instance of one of our metatheorems.