Results 1 
8 of
8
General logical metatheorems for functional analysis
, 2008
"... In this paper we prove general logical metatheorems which state that for large classes of theorems and proofs in (nonlinear) functional analysis it is possible to extract from the proofs effective bounds which depend only on very sparse local bounds on certain parameters. This means that the bounds ..."
Abstract

Cited by 45 (26 self)
 Add to MetaCart
In this paper we prove general logical metatheorems which state that for large classes of theorems and proofs in (nonlinear) functional analysis it is possible to extract from the proofs effective bounds which depend only on very sparse local bounds on certain parameters. This means that the bounds are uniform for all parameters meeting these weak local boundedness conditions. The results vastly generalize related theorems due to the second author where the global boundedness of the underlying metric space (resp. a convex subset of a normed space) was assumed. Our results treat general classes of spaces such as metric, hyperbolic, CAT(0), normed, uniformly convex and inner product spaces and classes of functions such as nonexpansive, HölderLipschitz, uniformly continuous, bounded and weakly quasinonexpansive ones. We give several applications in the area of metric fixed point theory. In particular, we show that the uniformities observed in a number of recently found effective bounds (by proof theoretic analysis) can be seen as instances of our general logical results.
Asymptotically nonexpansive mappings in uniformly convex hyperbolic spaces
, 2008
"... This paper provides a fixed point theorem for asymptotically nonexpansive mappings in uniformly convex hyperbolic spaces as well as new effective results on the KrasnoselskiMann iterations of such mappings. The latter were found using methods from logic and the paper continues a case study in the g ..."
Abstract

Cited by 17 (10 self)
 Add to MetaCart
This paper provides a fixed point theorem for asymptotically nonexpansive mappings in uniformly convex hyperbolic spaces as well as new effective results on the KrasnoselskiMann iterations of such mappings. The latter were found using methods from logic and the paper continues a case study in the general program of extracting effective data from primafacie ineffective proofs in the fixed point theory of such mappings.
Proof Interpretations and the Computational Content of Proofs. Draft of book in preparation
, 2007
"... This survey reports on some recent developments in the project of applying proof theory to proofs in core mathematics. The historical roots, however, go back to Hilbert’s central theme in the foundations of mathematics which can be paraphrased by the following question ..."
Abstract

Cited by 16 (2 self)
 Add to MetaCart
(Show Context)
This survey reports on some recent developments in the project of applying proof theory to proofs in core mathematics. The historical roots, however, go back to Hilbert’s central theme in the foundations of mathematics which can be paraphrased by the following question
Strongly Uniform Bounds from SemiConstructive Proofs
, 2004
"... In [12], the second author obtained metatheorems for the extraction of effective (uniform) bounds from classical, prima facie nonconstructive proofs in functional analysis. These metatheorems for the first time cover general classes of structures like arbitrary metric, hyperbolic, CAT(0) and nor ..."
Abstract

Cited by 12 (8 self)
 Add to MetaCart
(Show Context)
In [12], the second author obtained metatheorems for the extraction of effective (uniform) bounds from classical, prima facie nonconstructive proofs in functional analysis. These metatheorems for the first time cover general classes of structures like arbitrary metric, hyperbolic, CAT(0) and normed linear spaces and guarantee the independence of the bounds from parameters raging over metrically bounded (not necessarily compact!) spaces. The use of classical logic imposes some severe restrictions on the formulas and proofs for which the extraction can be carried out. In this paper we consider similar metatheorems for semiintuitionistic proofs, i.e. proofs in an intuitionistic setting enriched with certain nonconstructive principles. Contrary to
Rates of convergence of recursively defined sequences
 CCA 2004
, 2004
"... This paper gives a generalization of a result by Matiyasevich which gives explicit rates of convergence for monotone recursively defined sequences. The generalization is motivated by recent developments in fixed point theory and the search for applications of proof mining to the field. It relaxes th ..."
Abstract

Cited by 2 (1 self)
 Add to MetaCart
This paper gives a generalization of a result by Matiyasevich which gives explicit rates of convergence for monotone recursively defined sequences. The generalization is motivated by recent developments in fixed point theory and the search for applications of proof mining to the field. It relaxes the requirement for monotonicity to the form xn+1 ≤ (1 + an)xn + bn where the parameter sequences have to be bounded in sum, and also provides means to treat computational errors. The paper also gives an example result, an application of proof mining to fixed point theory, that can be achieved by the means discussed in the paper.
Quantitative results on Fejér monotone sequences
, 2015
"... We provide in a unified way quantitative forms of strong convergence results for numerous iterative procedures which satisfy a general type of Fejér monotonicity where the convergence uses the compactness of the underlying set. These quantitative versions are in the form of explicit rates of soca ..."
Abstract

Cited by 2 (2 self)
 Add to MetaCart
(Show Context)
We provide in a unified way quantitative forms of strong convergence results for numerous iterative procedures which satisfy a general type of Fejér monotonicity where the convergence uses the compactness of the underlying set. These quantitative versions are in the form of explicit rates of socalled metastability in the sense of T. Tao. Our approach covers examples ranging from the proximal point algorithm for maximal monotone operators to various fixed point iterations (xn) for firmly nonexpansive, asymptotically nonexpansive, strictly pseudocontractive and other types of mappings. Many of the results hold in a general metric setting with some convexity structure added (socalled Whyperbolic spaces). Sometimes uniform convexity is assumed still covering the important class of CAT(0)spaces due to Gromov.
On the quantitative asymptotic behavior of strongly nonexpansive
 mappings in Banach and geodesic spaces, Preprint 2015
"... We give explicit rates of asymptotic regularity for iterations of strongly nonexpansive mappings T in general Banach spaces as well as rates of metastability (in the sense of Tao) in the context of uniformly convex Banach spaces when T is odd. This, in particular, applies to linear normone projecti ..."
Abstract

Cited by 2 (2 self)
 Add to MetaCart
(Show Context)
We give explicit rates of asymptotic regularity for iterations of strongly nonexpansive mappings T in general Banach spaces as well as rates of metastability (in the sense of Tao) in the context of uniformly convex Banach spaces when T is odd. This, in particular, applies to linear normone projections as well as to sunny nonexpansive retractions. The asymptotic regularity results even hold for strongly quasinonexpansive mappings (in the sense of Bruck), the addition of error terms and very general metric settings. In particular, we get the first quantitative results on iterations (with errors) of compositions of metric projections in CAT(κ)spaces (κ> 0). Under an additional compactness assumption we obtain, moreover, a rate of metastability for the strong convergence of such iterations.