Results 1  10
of
30
Local stability of ergodic averages
 Transactions of the American Mathematical Society
"... We consider the extent to which one can compute bounds on the rate of convergence of a sequence of ergodic averages. It is not difficult to construct an example of a computable Lebesguemeasure preserving transformation of [0, 1] and a characteristic function f = χA such that the ergodic averages An ..."
Abstract

Cited by 27 (5 self)
 Add to MetaCart
We consider the extent to which one can compute bounds on the rate of convergence of a sequence of ergodic averages. It is not difficult to construct an example of a computable Lebesguemeasure preserving transformation of [0, 1] and a characteristic function f = χA such that the ergodic averages Anf do not converge to a computable element of L2([0,1]). In particular, there is no computable bound on the rate of convergence for that sequence. On the other hand, we show that, for any nonexpansive linear operator T on a separable Hilbert space, and any element f, it is possible to compute a bound on the rate of convergence of (Anf) from T, f, and the norm ‖f ∗ ‖ of the limit. In particular, if T is the Koopman operator arising from a computable ergodic measure preserving transformation of a probability space X and f is any computable element of L2(X), then there is a computable bound on the rate of convergence of the sequence (Anf). The mean ergodic theorem is equivalent to the assertion that for every function K(n) and every ε> 0, there is an n with the property that the ergodic averages Amf are stable to within ε on the interval [n, K(n)]. Even in situations where the sequence (Anf) does not have a computable limit, one can give explicit bounds on such n in terms of K and ‖f‖/ε. This tells us how far one has to search to find an n so that the ergodic averages are “locally stable ” on a large interval. We use these bounds to obtain a similarly explicit version of the pointwise ergodic theorem, and show that our bounds are qualitatively different from ones that can be obtained using upcrossing inequalities due to Bishop and Ivanov. Finally, we explain how our positive results can be viewed as an application of a body of general prooftheoretic methods falling under the heading of “proof mining.” 1
Proof Interpretations and the Computational Content of Proofs. Draft of book in preparation
, 2007
"... This survey reports on some recent developments in the project of applying proof theory to proofs in core mathematics. The historical roots, however, go back to Hilbert’s central theme in the foundations of mathematics which can be paraphrased by the following question ..."
Abstract

Cited by 9 (1 self)
 Add to MetaCart
This survey reports on some recent developments in the project of applying proof theory to proofs in core mathematics. The historical roots, however, go back to Hilbert’s central theme in the foundations of mathematics which can be paraphrased by the following question
Effective uniform bounds from proofs in abstract functional analysis
 CIE 2005 NEW COMPUTATIONAL PARADIGMS: CHANGING CONCEPTIONS OF WHAT IS COMPUTABLE
, 2005
"... ..."
Asymptotically nonexpansive mappings in uniformly convex hyperbolic spaces
, 2008
"... This paper provides a fixed point theorem for asymptotically nonexpansive mappings in uniformly convex hyperbolic spaces as well as new effective results on the KrasnoselskiMann iterations of such mappings. The latter were found using methods from logic and the paper continues a case study in the g ..."
Abstract

Cited by 8 (8 self)
 Add to MetaCart
This paper provides a fixed point theorem for asymptotically nonexpansive mappings in uniformly convex hyperbolic spaces as well as new effective results on the KrasnoselskiMann iterations of such mappings. The latter were found using methods from logic and the paper continues a case study in the general program of extracting effective data from primafacie ineffective proofs in the fixed point theory of such mappings.
A quantitative Mean Ergodic Theorem for uniformly convex Banach spaces
, 2008
"... We provide an explicit uniform bound on the local stability of ergodic averages in uniformly convex Banach spaces. Our result can also be viewed as a finitary version in the sense of T. Tao of the Mean Ergodic Theorem for such spaces and so generalizes similar results obtained for Hilbert spaces by ..."
Abstract

Cited by 8 (8 self)
 Add to MetaCart
We provide an explicit uniform bound on the local stability of ergodic averages in uniformly convex Banach spaces. Our result can also be viewed as a finitary version in the sense of T. Tao of the Mean Ergodic Theorem for such spaces and so generalizes similar results obtained for Hilbert spaces by Avigad, Gerhardy and Towsner [1] and T. Tao [10]. 1
The metamathematics of ergodic theory
 THE ANNALS OF PURE AND APPLIED LOGIC
, 2009
"... The metamathematical tradition, tracing back to Hilbert, employs syntactic modeling to study the methods of contemporary mathematics. A central goal has been, in particular, to explore the extent to which infinitary methods can be understood in computational or otherwise explicit terms. Ergodic theo ..."
Abstract

Cited by 6 (2 self)
 Add to MetaCart
The metamathematical tradition, tracing back to Hilbert, employs syntactic modeling to study the methods of contemporary mathematics. A central goal has been, in particular, to explore the extent to which infinitary methods can be understood in computational or otherwise explicit terms. Ergodic theory provides rich opportunities for such analysis. Although the field has its origins in seventeenth century dynamics and nineteenth century statistical mechanics, it employs infinitary, nonconstructive, and structural methods that are characteristically modern. At the same time, computational concerns and recent applications to combinatorics and number theory force us to reconsider the constructive character of the theory and its methods. This paper surveys some recent contributions to the metamathematical study of ergodic theory, focusing on the mean and pointwise ergodic theorems and the Furstenberg structure theorem for measure preserving systems. In particular, I characterize the extent to which these theorems are nonconstructive, and explain how prooftheoretic methods can be used to locate their “constructive content.”
Rates of Asymptotic Regularity for Halpern Iterations of Nonexpansive Mappings
, 2008
"... In this paper we obtain new effective results on the Halpern iterations of nonexpansive mappings using methods from mathematical logic or, more specifically, prooftheoretic techniques. We give effective rates of asymptotic regularity for the Halpern iterations of nonexpansive selfmappings of nonemp ..."
Abstract

Cited by 4 (3 self)
 Add to MetaCart
In this paper we obtain new effective results on the Halpern iterations of nonexpansive mappings using methods from mathematical logic or, more specifically, prooftheoretic techniques. We give effective rates of asymptotic regularity for the Halpern iterations of nonexpansive selfmappings of nonempty convex sets in normed spaces. The paper presents another case study in the project of proof mining, which is concerned with the extraction of effective uniform bounds from (primafacie) ineffective proofs.