Results 1  10
of
388
Domain Decomposition Algorithms With Small Overlap
, 1994
"... Numerical experiments have shown that twolevel Schwarz methods often perform very well even if the overlap between neighboring subregions is quite small. This is true to an even greater extent for a related algorithm, due to Barry Smith, where a Schwarz algorithm is applied to the reduced linear ..."
Abstract

Cited by 82 (11 self)
 Add to MetaCart
Numerical experiments have shown that twolevel Schwarz methods often perform very well even if the overlap between neighboring subregions is quite small. This is true to an even greater extent for a related algorithm, due to Barry Smith, where a Schwarz algorithm is applied to the reduced linear system of equations that remains after that the variables interior to the subregions have been eliminated. In this paper, a supporting theory is developed.
Infinitedimensional linear systems with unbounded control and observation: A functional analytic approach
 Transactions of the American Mathematical Society
, 1987
"... ABSTRACT. The object of this paper is to develop a unifying framework for the functional analytic representation of infinite dimensional linear systems with unbounded input and output operators. On the basis of the general approach new results are derived on the wellposedness of feedback systems and ..."
Abstract

Cited by 59 (1 self)
 Add to MetaCart
ABSTRACT. The object of this paper is to develop a unifying framework for the functional analytic representation of infinite dimensional linear systems with unbounded input and output operators. On the basis of the general approach new results are derived on the wellposedness of feedback systems and on the linear quadratic control problem. The implications of the theory for large classes of functional and partial differential equations are discussed in detail. 1. Introduction. For
Mixed finite element methods on nonmatching multiblock grids
 SIAM J. Numer. Anal
, 2000
"... Abstract. We consider mixed finite element methods for second order elliptic equations on nonmatching multiblock grids. A mortar finite element space is introduced on the nonmatching interfaces. We approximate in this mortar space the trace of the solution, and we impose weakly a continuity of flux ..."
Abstract

Cited by 47 (24 self)
 Add to MetaCart
Abstract. We consider mixed finite element methods for second order elliptic equations on nonmatching multiblock grids. A mortar finite element space is introduced on the nonmatching interfaces. We approximate in this mortar space the trace of the solution, and we impose weakly a continuity of flux condition. A standard mixed finite element method is used within the blocks. Optimal order convergence is shown for both the solution and its flux. Moreover, at certain discrete points, superconvergence is obtained for the solution and also for the flux in special cases. Computational results using an efficient parallel domain decomposition algorithm are presented in confirmation of the theory.
Multiple Boundary Peak Solutions For Some Singularly Perturbed Neumann Problems
"... We consider the problem ae " 2 \Deltau \Gamma u + f(u) = 0 in\Omega u ? 0 in\Omega ; @u @ = 0 on @\Omega ; where\Omega is a bounded smooth domain in R N , " ? 0 is a small parameter and f is a superlinear, subcritical nonlinearity. It is known that this equation possesses boundary spike ..."
Abstract

Cited by 46 (34 self)
 Add to MetaCart
We consider the problem ae " 2 \Deltau \Gamma u + f(u) = 0 in\Omega u ? 0 in\Omega ; @u @ = 0 on @\Omega ; where\Omega is a bounded smooth domain in R N , " ? 0 is a small parameter and f is a superlinear, subcritical nonlinearity. It is known that this equation possesses boundary spike solutions such that the spike concentrates, as " approaches zero, at a critical point of the mean curvature function H(P ); P 2 @ It is also known that this equation has multiple boundary spike solutions at multiple nondegenerate critical points of H(P ) or multiple local maximum points of H(P ). In this paper, we prove that for any fixed positive integer K there exist boundary K \Gamma peak solutions at a local minimum point of H(P ). This implies that for any smooth and bounded domain there always exist boundary K \Gamma peak solutions. We first use the LiapunovSchmidt method to reduce the problem to finite dimensions. Then we use a maximizing procedure to obtain multiple boundary spikes. 1.
A Multigrid Algorithm For The Mortar Finite Element Method
 SIAM J. NUMER. ANAL
"... The objective of this paper is to develop and analyse a multigrid algorithm for the system of equations arising from the mortar finite element discretization of second order elliptic boundary value problems. In order to establish the infsup condition for the saddle point formulation and to motivate ..."
Abstract

Cited by 43 (11 self)
 Add to MetaCart
The objective of this paper is to develop and analyse a multigrid algorithm for the system of equations arising from the mortar finite element discretization of second order elliptic boundary value problems. In order to establish the infsup condition for the saddle point formulation and to motivate the subsequent treatment of the discretizations we revisit first briefly the theoretical concept of the mortar finite element method. Employing suitable meshdependent norms we verify the validity of the LBB condition for the resulting mixed method and prove an L 2 error estimate. This is the key for establishing a suitable approximation property for our multigrid convergence proof via a duality argument. In fact, we are able to verify optimal multigrid efficiency based on a smoother which is applied to the whole coupled system of equations. We conclude with several numerical tests of the proposed scheme which confirm the theoretical results and show the efficiency and the robustness of the method even in situations not covered by the theory.
A nonoverlapping domain decomposition method for Maxwellâ€™s equations in three dimensions
 SIAM J. Numer. Anal
"... Abstract. We propose a substructuring preconditioner for solving threedimensional elliptic equations with strongly discontinuous coefficients. The new preconditioner can be viewed as a variant of the classical substructuring preconditioner proposed by Bramble, Pasiack and Schatz (1989), but with muc ..."
Abstract

Cited by 35 (10 self)
 Add to MetaCart
Abstract. We propose a substructuring preconditioner for solving threedimensional elliptic equations with strongly discontinuous coefficients. The new preconditioner can be viewed as a variant of the classical substructuring preconditioner proposed by Bramble, Pasiack and Schatz (1989), but with much simpler coarse solvers. Though the condition number of the preconditioned system may not have a good bound, we are able to show that the convergence rate of the PCG method with such substructuring preconditioner is nearly optimal, and also robust with respect to the (possibly large) jumps of the coefficient in the elliptic equation. 1.
Some Nonoverlapping Domain Decomposition Methods
, 1998
"... . The purpose of this paper is to give a unified investigation of a class of nonoverlapping domain decomposition methods for solving secondorder elliptic problems in two and three dimensions. The methods under scrutiny fall into two major categories: the substructuringtype methods and the Neumann ..."
Abstract

Cited by 35 (6 self)
 Add to MetaCart
. The purpose of this paper is to give a unified investigation of a class of nonoverlapping domain decomposition methods for solving secondorder elliptic problems in two and three dimensions. The methods under scrutiny fall into two major categories: the substructuringtype methods and the NeumannNeumanntype methods. The basic framework used for analysis is the parallel subspace correction method or additive Schwarz method, and other technical tools include localglobal and globallocal techniques. The analyses for both two and threedimensional cases are carried out simultaneously. Some internal relationships between various algorithms are observed and several new variants of the algorithms are also derived. Key words. nonoverlapping domain decomposition, Schur complement, localglobal and globallocal techniques, jumps in coe#cients, substructuring, NeumannNeumann, balancing methods AMS subject classifications. 65N30, 65N55, 65F10 PII. S0036144596306800 1. Introduction. T...
Coupling Fluid Flow with Porous Media Flow
 SIAM J. Numer. Anal
, 2003
"... The transport of substances back and forth between surface water and groundwater is a very serious problem. We study herein the mathematical model of this setting consisting of the Stokes equations in the fluid region coupled with the Darcy equations in the porous medium, coupled across the interfac ..."
Abstract

Cited by 32 (4 self)
 Add to MetaCart
The transport of substances back and forth between surface water and groundwater is a very serious problem. We study herein the mathematical model of this setting consisting of the Stokes equations in the fluid region coupled with the Darcy equations in the porous medium, coupled across the interface by the BeaversJosephSa#man conditions. We prove existence of weak solutions and give a complete analysis of a finite element scheme which allows a simulation of the coupled problem to be uncoupled into steps involving porous media and fluid flow subproblems. This is important because there are many "legacy" codes available which have been optimized for uncoupled porous media and fluid flow.
UNIFIED HYBRIDIZATION OF DISCONTINUOUS GALERKIN, MIXED AND CONTINUOUS GALERKIN METHODS FOR SECOND ORDER ELLIPTIC PROBLEMS
"... Abstract. We introduce a unifying framework for hybridization of finite element methods for second order elliptic problems. The methods fitting in the framework are a general class of mixeddual finite element methods including hybridized mixed, continuous Galerkin, nonconforming and a new wide cla ..."
Abstract

Cited by 30 (10 self)
 Add to MetaCart
Abstract. We introduce a unifying framework for hybridization of finite element methods for second order elliptic problems. The methods fitting in the framework are a general class of mixeddual finite element methods including hybridized mixed, continuous Galerkin, nonconforming and a new wide class of hybridizable discontinuous Galerkin methods. The main feature of the methods in this framework is that their approximate solutions can be expressed in an elementbyelement fashion in terms of an approximate trace satisfying a global weak formulation. Since the associated matrix is symmetric and positive definite, these methods can be efficiently implemented. Moreover, the framework allows, in a single implementation, the use of different methods in different elements or subdomains of the computational domain which are then automatically coupled. Finally, the framework brings about a new point of view thanks to which it is possible to see how to devise novel methods displaying new, extremely localized and simple mortaring techniques, as well as methods permitting an even further reduction of the number of globally coupled degrees of freedom. 1.