Results 1  10
of
44
A computational approach to edge detection
 IEEE Transactions on Pattern Analysis and Machine Intelligence
, 1986
"... AbstractThis paper describes a computational approach to edge detection. The success of the approach depends on the definition of a comprehensive set of goals for the computation of edge points. These goals must be precise enough to delimit the desired behavior of the detector while making minimal ..."
Abstract

Cited by 4306 (0 self)
 Add to MetaCart
AbstractThis paper describes a computational approach to edge detection. The success of the approach depends on the definition of a comprehensive set of goals for the computation of edge points. These goals must be precise enough to delimit the desired behavior of the detector while making minimal assumptions about the form of the solution. We define detection and localization criteria for a class of edges, and present mathematical forms for these criteria as functionals on the operator impulse response. A third criterion is then added to ensure that the detector has only one response to a single edge. We use the criteria in numerical optimization to derive detectors for several common image features, including step edges. On specializing the analysis to step edges, we find that there is a natural uncertainty principle between detection and localization performance, which are the two main goals. With this principle we derive a single operator shape which is optimal at any scale. The optimal detector has a simple approximate implementation in which edges are marked at maxima in gradient magnitude of a Gaussiansmoothed image. We extend this simple detector using operators of several widths to cope with different signaltonoise ratios in the image. We present a general method, called feature synthesis, for the finetocoarse integration of information from operators at different scales. Finally we show that step edge detector performance improves considerably as the operator point spread function is extended along the edge. This detection scheme uses several elongated operators at each point, and the directional operator outputs are integrated with the gradient maximum detector. Index TermsEdge detection, feature extraction, image processing, machine vision, multiscale image analysis. I.
Edge Detection
, 1985
"... For both biological systems and machines, vision begins with a large and unwieldy array of measurements of the amount of light reflected from surfaces in the environment. The goal of vision is to recover physical properties of objects in the scene, such as the location of object boundaries and the s ..."
Abstract

Cited by 1168 (1 self)
 Add to MetaCart
For both biological systems and machines, vision begins with a large and unwieldy array of measurements of the amount of light reflected from surfaces in the environment. The goal of vision is to recover physical properties of objects in the scene, such as the location of object boundaries and the structure, color and texture of object surfaces, from the twodimensional image that is projected onto the eye or camera. This goal is not achieved in a single step; vision proceeds in stages, with each stage producing increasingly more useful descriptions of the image and then the scene. The first clue about the physical properties of the scene are provided by the changes of intensity in the image. The importance of intensity changes and edges in early visual processg has led to extensive research on their detection, description and .use, both in computer and biological vision systems. This article reviews some of the theory that underlies the detection of edges, and the methods used to carry out this analysis.
Regularization Theory and Neural Networks Architectures
 Neural Computation
, 1995
"... We had previously shown that regularization principles lead to approximation schemes which are equivalent to networks with one layer of hidden units, called Regularization Networks. In particular, standard smoothness functionals lead to a subclass of regularization networks, the well known Radial Ba ..."
Abstract

Cited by 382 (31 self)
 Add to MetaCart
We had previously shown that regularization principles lead to approximation schemes which are equivalent to networks with one layer of hidden units, called Regularization Networks. In particular, standard smoothness functionals lead to a subclass of regularization networks, the well known Radial Basis Functions approximation schemes. This paper shows that regularization networks encompass a much broader range of approximation schemes, including many of the popular general additive models and some of the neural networks. In particular, we introduce new classes of smoothness functionals that lead to different classes of basis functions. Additive splines as well as some tensor product splines can be obtained from appropriate classes of smoothness functionals. Furthermore, the same generalization that extends Radial Basis Functions (RBF) to Hyper Basis Functions (HBF) also leads from additive models to ridge approximation models, containing as special cases Breiman's hinge functions, som...
Splines: A Perfect Fit for Signal/Image Processing
 IEEE SIGNAL PROCESSING MAGAZINE
, 1999
"... ..."
(Show Context)
Using Canny’s criteria to derive a recursively implemented optimal edge detector,” Int
 J. of Comp. Vision
, 1987
"... A highly efficient recursive algorithm for edge detection is presented. Using Canny's design [1], we show that a solution to his precise formulation of detection and localization for an infinite extent filter leads to an optimal operator in one dimension, which can be efficiently implemented by ..."
Abstract

Cited by 278 (14 self)
 Add to MetaCart
(Show Context)
A highly efficient recursive algorithm for edge detection is presented. Using Canny's design [1], we show that a solution to his precise formulation of detection and localization for an infinite extent filter leads to an optimal operator in one dimension, which can be efficiently implemented by two recursive filters moving in opposite directions. In addition to the noise truncature immunity which results, the recursive nature of the filtering operations leads, with sequential machines, to a substantial saving in computational effort (five multiplications and five additions for one pixel, independent of the size of the neighborhood). The extension to the twodimensional case is considered and the resulting filtering structures are implemented as twodimensional recursive filters. Hence, the filter size can be varied by simply changing the value of one parameter without affecting the time execution of the algorithm. Performance measures of this new edge detector are given and compared to Canny's filters. Various experimental results are shown. I
Finite Element Methods for Active Contour Models and Balloons for 2D and 3D Images
 IEEE Transactions on Pattern Analysis and Machine Intelligence
, 1991
"... The use of energyminimizing curves, known as "snakes" to extract features of interest in images has been introduced by Kass, Witkin and Terzopoulos [23]. A balloon model was introduced in [12] as a way to generalize and solve some of the problems encountered with the original method. We p ..."
Abstract

Cited by 191 (28 self)
 Add to MetaCart
(Show Context)
The use of energyminimizing curves, known as "snakes" to extract features of interest in images has been introduced by Kass, Witkin and Terzopoulos [23]. A balloon model was introduced in [12] as a way to generalize and solve some of the problems encountered with the original method. We present a 3D generalization of the balloon model as a 3D deformable surface, which evolves in 3D images. It is deformed under the action of internal and external forces attracting the surface toward detected edgels by means of an attraction potential. We also show properties of energyminimizing surfaces concerning their relationship with 3D edge points. To solve the minimization problem for a surface, two simplified approaches are shown first, defining a 3D surface as a series of 2D planar curves. Then, after comparing Finite Element Method and Finite Difference Method in the 2D problem, we solve the 3D model using the Finite Element Method yielding greater stability and faster convergence. We have a...
Structural Saliency: The Detection of Globally Salient Structures Using a Locally Connected Network
, 1988
"... When we look at images, certain salient structures often attract our immediate attention, without requiring a systematic scan of the entire image. In subsequent stages, processing resources can be allocated preferentially to these salient structures. In many cases this saJiency is a property of the ..."
Abstract

Cited by 162 (1 self)
 Add to MetaCart
When we look at images, certain salient structures often attract our immediate attention, without requiring a systematic scan of the entire image. In subsequent stages, processing resources can be allocated preferentially to these salient structures. In many cases this saJiency is a property of the structure as a whole, i.e., parts of the structure are not salient in isolation. In this paper we present a saliency measure based on cur vature and curvature variation. The structures this measure emphasizes are also salient in human perception, and they often correspond to objects of interest in the image. We present a method for computing the sallehey by a simple iterative scheme, using a uniform network of locally connected processing elements. The network uses an optimization approach to produce a "saliency map" which is a representation of the image emphasizing salient locations. The main.properties of the network are: (i) the computations are simple and local, (ii) globally salient structures emerge with a small number of iterations (iii) as a byproduct of the computation contours are smoothed, and gaps are filledin.
BSpline Signal Processing: Part ITheory
 IEEE Trans. Signal Processing
, 1993
"... This paper describes a set of efficient filtering techniques for the processing and representation of signals in terms of continuous Bspline basis functions. We first consider the problem of determining the spline coefficients for an exact signal interpolation (direct Bspline transform). The rever ..."
Abstract

Cited by 146 (31 self)
 Add to MetaCart
(Show Context)
This paper describes a set of efficient filtering techniques for the processing and representation of signals in terms of continuous Bspline basis functions. We first consider the problem of determining the spline coefficients for an exact signal interpolation (direct Bspline transform). The reverse operation is the signal reconstruction from its spline coefficients with an optional zooming factor rn (indirect Bspline transform) . We derive general expressions for the z transforms and the equivalent continuous impulse responses of Bspline interpolators of order n. We present simple techniques for signal differentiation and filtering in the transformed domain. We then derive recursive filters that efficiently solve the problems of smoothing spline and least squares approximations. The smoothing spline technique approximates a signal with a complete set of coefficients subject to certain regularization or smoothness constraints. The least squares approach, on the other hand, uses a reduced number of Bspline coefficients with equally spaced nodes; this technique is in many ways analogous to the application of antialiasing lowpass filter prior to decimation in order to represent a signal correctly with a reduced number of samples.
Edge Detection Techniques  An Overview
 INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND IMAGE ANALYSIS
, 1998
"... In computer vision and image processing, edge detection concerns the localization of significant variations of the grey level image and the identification of the physical phenomena that originated them. This information is very useful for applications in 3D reconstruction, motion, recognition, image ..."
Abstract

Cited by 119 (2 self)
 Add to MetaCart
(Show Context)
In computer vision and image processing, edge detection concerns the localization of significant variations of the grey level image and the identification of the physical phenomena that originated them. This information is very useful for applications in 3D reconstruction, motion, recognition, image enhancement and restoration, image registration, image compression, and so on. Usually, edge detection requires smoothing and differentiation of the image. Differentiation is an illconditioned problem and smoothing results in a loss of information. It is difficult to design a general edge detection algorithm which performs well in many contexts and captures the requirements of subsequent processing stages. Consequently, over the history of digital image processing a variety of edge detectors have been devised which differ in their mathematical and algorithmic properties. This paper is an account of the current state of our understanding of edge detection. We propose an overview of research...