Results 1 
4 of
4
Continuous Quantum Hidden Subgroup Algorithms
, 2003
"... In this paper we show how to construct two continuous variable and one continuous functional quantum hidden subgroup (QHS) algorithms. These are respectively quantum algorithms on the additive group of reals R, the additive group R/Z of the reals R mod 1, i.e., the circle, and the additive group Pat ..."
Abstract

Cited by 2 (1 self)
 Add to MetaCart
In this paper we show how to construct two continuous variable and one continuous functional quantum hidden subgroup (QHS) algorithms. These are respectively quantum algorithms on the additive group of reals R, the additive group R/Z of the reals R mod 1, i.e., the circle, and the additive group Paths of L 2 paths x: [0, 1] → R n in real nspace R n. Also included is a curious discrete QHS algorithm which is dual to Shor’s algorithm. Contents 1
Geometry of abstraction in quantum computation
"... Quantum algorithms are sequences of abstract operations, performed on nonexistent computers. They are in obvious need of categorical semantics. We present some steps in this direction, following earlier contributions of Abramsky, Coecke and Selinger. In particular, we analyze function abstraction i ..."
Abstract

Cited by 2 (2 self)
 Add to MetaCart
Quantum algorithms are sequences of abstract operations, performed on nonexistent computers. They are in obvious need of categorical semantics. We present some steps in this direction, following earlier contributions of Abramsky, Coecke and Selinger. In particular, we analyze function abstraction in quantum computation, which turns out to characterize its classical interfaces. Some quantum algorithms provide feasible solutions of important hard problems, such as factoring and discrete log (which are the building blocks of modern cryptography). It is of a great practical interest to precisely characterize the computational resources needed to execute such quantum algorithms. There are many ideas how to build a quantum computer. Can we prove some necessary conditions? Categorical semantics help with such questions. We show how to implement an important family of quantum algorithms using just abelian groups and relations.
IS GROVER’S ALGORITHM A QUANTUM HIDDEN SUBGROUP ALGORITHM?
, 2006
"... Abstract. The arguments given in this paper suggest that Grover’s and Shor’s algorithms are more closely related than one might at first expect. Specifically, we show that Grover’s algorithm can be viewed as a quantum algorithm which solves a nonabelian hidden subgroup problem (HSP). But we then go ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
Abstract. The arguments given in this paper suggest that Grover’s and Shor’s algorithms are more closely related than one might at first expect. Specifically, we show that Grover’s algorithm can be viewed as a quantum algorithm which solves a nonabelian hidden subgroup problem (HSP). But we then go on to show that the standard nonabelian quantum hidden subgroup (QHS) algorithm can not find a solution to this particular HSP. This leaves open the question as to whether or not there is some modification of the standard nonabelian QHS algorithm which is equivalent to Grover’s algorithm. Contents
unknown title
, 2008
"... Algebraically connecting the hardware/software boundary using a uniform approach to highperformance computation for software and hardware applications ..."
Abstract
 Add to MetaCart
Algebraically connecting the hardware/software boundary using a uniform approach to highperformance computation for software and hardware applications