Results 1  10
of
30
The homotopy theory of dgcategories and derived Morita Theory
, 2006
"... The main purpose of this work is to study the homotopy theory of dgcategories up to quasiequivalences. Our main result is a description of the mapping spaces between two dgcategories C and D in terms of the nerve of a certain category of (C, D)bimodules. We also prove that the homotopy category ..."
Abstract

Cited by 61 (8 self)
 Add to MetaCart
The main purpose of this work is to study the homotopy theory of dgcategories up to quasiequivalences. Our main result is a description of the mapping spaces between two dgcategories C and D in terms of the nerve of a certain category of (C, D)bimodules. We also prove that the homotopy category Ho(dg −Cat) possesses internal Hom’s relative to the (derived) tensor product of dgcategories. We use these two results in order to prove a derived version of Morita theory, describing the morphisms between dgcategories of modules over two dgcategories C and D as the dgcategory of (C, D)bimodules. Finally, we give three applications of our results. The first one expresses Hochschild cohomology as endomorphisms of the identity functor, as well as higher homotopy groups of the classifying space of dgcategories (i.e. the nerve of the category of dgcategories and quasiequivalences between them). The second application is the existence of a good theory of localization for dgcategories, defined in terms of a natural universal property. Our last application states that the dgcategory of (continuous) morphisms between the dgcategories of quasicoherent (resp. perfect) complexes on two schemes (resp. smooth and proper schemes) is quasiequivalent
A model category structure on the category of simplicial categories
, 2005
"... In this paper we put a cofibrantly generated model category structure on the category of small simplicial categories. The weak equivalences are a simplicial analogue of the notion of equivalence of categories. ..."
Abstract

Cited by 49 (6 self)
 Add to MetaCart
In this paper we put a cofibrantly generated model category structure on the category of small simplicial categories. The weak equivalences are a simplicial analogue of the notion of equivalence of categories.
Higher topos theory
, 2006
"... Let X be a topological space and G an abelian group. There are many different definitions for the cohomology group H n (X; G); we will single out three of them for discussion here. First of all, we have the singular cohomology groups H n sing (X; G), which are defined to be cohomology of a chain com ..."
Abstract

Cited by 47 (0 self)
 Add to MetaCart
Let X be a topological space and G an abelian group. There are many different definitions for the cohomology group H n (X; G); we will single out three of them for discussion here. First of all, we have the singular cohomology groups H n sing (X; G), which are defined to be cohomology of a chain complex of Gvalued singular cochains on X. An alternative is to regard H n (•, G) as a representable functor on the homotopy category
Three models for the homotopy theory of homotopy theories
, 2005
"... its simplicial localization yields a “homotopy theory of homotopy theories. ” In this paper we show that there are two different categories of diagrams of simplicial sets, each equipped with an appropriate definition of weak equivalence, such that the resulting homotopy theories are each equivalent ..."
Abstract

Cited by 43 (8 self)
 Add to MetaCart
its simplicial localization yields a “homotopy theory of homotopy theories. ” In this paper we show that there are two different categories of diagrams of simplicial sets, each equipped with an appropriate definition of weak equivalence, such that the resulting homotopy theories are each equivalent to the homotopy theory arising from the model category structure on simplicial categories. Thus, any of these three categories with their respective weak equivalences could be considered a model for the homotopy theory of homotopy theories. One of them in particular, Rezk’s complete Segal space model category structure on the category of simplicial spaces, is much more convenient from the perspective of making calculations and therefore obtaining information about a given homotopy theory. 1.
Higher and derived stacks: a global overview
, 2005
"... These are expended notes of my talk at the summer institute in algebraic geometry (Seattle, JulyAugust 2005), whose main purpose is to present a global overview on the theory of higher and derived stacks. This text is far from being exhaustive but is intended to cover a rather large part of the sub ..."
Abstract

Cited by 21 (6 self)
 Add to MetaCart
These are expended notes of my talk at the summer institute in algebraic geometry (Seattle, JulyAugust 2005), whose main purpose is to present a global overview on the theory of higher and derived stacks. This text is far from being exhaustive but is intended to cover a rather large part of the subject, starting from the motivations and the foundational material, passing through some examples and basic notions, and ending with some more recent developments and open questions.
Model structures and the Oka principle
 2004), 203–223. HOLOMORPHIC MAPPINGS 13
"... Stein manifolds, a prestack being a contravariant simplicial ..."
Abstract

Cited by 20 (6 self)
 Add to MetaCart
Stein manifolds, a prestack being a contravariant simplicial
Integral transforms and Drinfeld centers in derived algebraic geometry
"... Compact objects are as necessary to this subject as air to breathe. R.W. Thomason to A. Neeman, [N3] Abstract. We study natural algebraic operations on categories arising in algebraic geometry and its homotopytheoretic generalization, derived algebraic geometry. We work with a broad class of derive ..."
Abstract

Cited by 19 (3 self)
 Add to MetaCart
Compact objects are as necessary to this subject as air to breathe. R.W. Thomason to A. Neeman, [N3] Abstract. We study natural algebraic operations on categories arising in algebraic geometry and its homotopytheoretic generalization, derived algebraic geometry. We work with a broad class of derived stacks which we call stacks with air. The class of stacks with air includes in particular all quasicompact, separated derived schemes and (in characteristic zero) all quotients of quasiprojective or smooth derived schemes by affine algebraic groups, and is closed under derived fiber products. We show that the (enriched) derived categories of quasicoherent sheaves on stacks with air behave well under algebraic and geometric operations. Namely, we identify the derived category of a fiber product with the tensor product of the derived categories of the factors. We also identify functors between derived categories of sheaves with integral transforms (providing a generalization of a theorem of Toën [To1] for ordinary schemes over a ring). As a first application, for a stack Y with air, we calculate the Drinfeld center (or synonymously,
On ∞topoi
, 2003
"... Let X be a topological space and G an abelian group. There are many different definitions for the cohomology group H n (X, G); we will single out three of them for discussion here. First of all, one has the singular cohomology H n sing(X, G), which is defined as the cohomology of a complex of Gvalu ..."
Abstract

Cited by 12 (0 self)
 Add to MetaCart
Let X be a topological space and G an abelian group. There are many different definitions for the cohomology group H n (X, G); we will single out three of them for discussion here. First of all, one has the singular cohomology H n sing(X, G), which is defined as the cohomology of a complex of Gvalued singular cochains. Alternatively, one may regard H n (•, G) as a representable functor on the homotopy category of topological spaces, and thereby define H n rep(X, G) to be the set of homotopy classes of maps from X into an EilenbergMacLane space K(G, n). A third possibility is to use the sheaf cohomology H n sheaf (X, G) of X with coefficients in the constant sheaf G on X. If X is a sufficiently nice space (for example, a CW complex), then all three of these definitions agree. In general, however, all three give different answers. The singular cohomology of X is constructed using continuous maps from simplices ∆k into X. If there are not many maps into X (for example if every path in X is constant), then we cannot expect H n sing (X, G) to tell us very much about X. Similarly, the cohomology group H n rep(X, G) is defined using maps from X into a simplicial complex, which (ultimately) relies on the existence of continuous realvalued functions on X. If X does not admit many realvalued functions, we should not expect H n rep (X, G) to be a useful invariant. However, the sheaf cohomology of X seems to be a good invariant for arbitrary spaces: it has excellent formal properties in general and sometimes yields