Results 1  10
of
49
From subfactors to categories and topology I. Frobenius algebras in and Morita equivalence of tensor categories
 J. Pure Appl. Alg
, 2003
"... We consider certain categorical structures that are implicit in subfactor theory. Making the connection between subfactor theory (at finite index) and category theory explicit sheds light on both subjects. Furthermore, it allows various generalizations of these structures, e.g. to arbitrary ground f ..."
Abstract

Cited by 108 (9 self)
 Add to MetaCart
(Show Context)
We consider certain categorical structures that are implicit in subfactor theory. Making the connection between subfactor theory (at finite index) and category theory explicit sheds light on both subjects. Furthermore, it allows various generalizations of these structures, e.g. to arbitrary ground fields, and the proof of new results about topological invariants in three dimensions. The central notion is that of a Frobenius algebra in a tensor category A, which reduces to the classical notion if A = FVect, where F is a field. An object X ∈ A with twosided dual X gives rise to a Frobenius algebra in A, and under weak additional conditions we prove a converse: There exists a bicategory E with ObjE = {A, B} such that EndE(A) ⊗ ≃ A and such that there are J, J: B ⇋ A producing the given Frobenius algebra. Many properties (additivity, sphericity, semisimplicity,...) of A carry over to the bicategory E. We define weak monoidal Morita equivalence of tensor categories, denoted A ≈ B, and establish a correspondence between Frobenius algebras in A and tensor categories B ≈ A. While considerably weaker than equivalence of tensor categories, weak monoidal Morita equivalence A ≈ B has remarkable consequences: A and B have equivalent (as braided tensor categories) quantum doubles (‘centers’) and (if A, B are semisimple spherical or ∗categories) have equal dimensions and give rise the same state sum invariant of closed oriented 3manifolds as recently defined by Barrett and Westbury. An instructive example is provided by finite dimensional semisimple and cosemisimple Hopf algebras, for which we prove H − mod ≈ ˆH − mod. The present formalism permits a fairly complete analysis of the center of a semisimple spherical category, which is the subject of the companion paper math.CT/0111205. 1
Galois theory for braided tensor categories and the modular closure
 Adv. Math
, 2000
"... Given a braided tensor ∗category C with conjugate (dual) objects and irreducible unit together with a full symmetric subcategory S we define a crossed product C ⋊ S. This construction yields a tensor ∗category with conjugates and an irreducible unit. (A ∗category is a category enriched over VectC ..."
Abstract

Cited by 59 (9 self)
 Add to MetaCart
(Show Context)
Given a braided tensor ∗category C with conjugate (dual) objects and irreducible unit together with a full symmetric subcategory S we define a crossed product C ⋊ S. This construction yields a tensor ∗category with conjugates and an irreducible unit. (A ∗category is a category enriched over VectC with positive ∗operation.) A Galois correspondence is established between intermediate categories sitting between C and C ⋊S and closed subgroups of the Galois group Gal(C⋊S/C) = AutC(C⋊S) of C, the latter being isomorphic to the compact group associated to S by the duality theorem of Doplicher and Roberts. Denoting by D ⊂ C the full subcategory of degenerate objects, i.e. objects which have trivial monodromy with all objects of C, the braiding of C extends to a braiding of C⋊S iff S ⊂ D. Under this condition C⋊S has no nontrivial degenerate objects iff S = D. If the original category C is rational (i.e. has only finitely many isomorphism classes of irreducible objects) then the same holds for the new one. The category C ≡ C ⋊ D is called the modular closure of C since in the rational case it is modular, i.e. gives rise to a unitary representation of the modular group SL(2, Z). (In passing we prove that every braided tensor ∗category with conjugates automatically is a ribbon category, i.e. has a twist.) If all simple objects of S have dimension one the structure of the category C ⋊ S can be clarified quite explicitly in terms of group cohomology. 1
Representations of compact quantum groups and subfactors
 J. Reine Angew. Math
, 1999
"... Abstract: We associate Popa systems ( = standard invariants of subfactors, cf. [P3],[P4]) to the finite dimensional representations of compact quantum groups. We characterise the systems arising in this way: these are the ones which can be “represented ” on finite dimensional Hilbert spaces. This is ..."
Abstract

Cited by 55 (19 self)
 Add to MetaCart
(Show Context)
Abstract: We associate Popa systems ( = standard invariants of subfactors, cf. [P3],[P4]) to the finite dimensional representations of compact quantum groups. We characterise the systems arising in this way: these are the ones which can be “represented ” on finite dimensional Hilbert spaces. This is proved by an universal construction. We explicitely compute (in terms of some free products) the operation of going from representations of compact quantum groups to Popa systems and then back via the universal construction. This is related with our previous work [B2]. We prove a Kesten type result for the coamenability of compact quantum groups, which allows us to compare it with the amenability of subfactors.
On exotic modular tensor categories
 Commun. Contemp. Math
"... Abstract. We classify all unitary modular tensor categories (UMTCs) of rank ≤ 4. There are a total of 35 UMTCs of rank ≤ 4 up to ribbon tensor equivalence. Since the distinction between the modular Smatrix S and −S has both topological and physical significance, so in our convention there are a tot ..."
Abstract

Cited by 37 (12 self)
 Add to MetaCart
(Show Context)
Abstract. We classify all unitary modular tensor categories (UMTCs) of rank ≤ 4. There are a total of 35 UMTCs of rank ≤ 4 up to ribbon tensor equivalence. Since the distinction between the modular Smatrix S and −S has both topological and physical significance, so in our convention there are a total of 70 UMTCs of rank ≤ 4. In particular, there are two trivial UMTCs with S = (±1). Each such UMTC can be obtained from 10 nontrivial prime UMTCs by direct product, and some symmetry operations. Explicit data of the 10 nontrivial prime UMTCs are given in Section 5. Relevance of UMTCs to topological quantum computation and various conjectures are given in Section 6. 1.
A FINITENESS PROPERTY FOR BRAIDED FUSION CATEGORIES
"... We introduce a finiteness property for braided fusion categories, describe a conjecture that would characterize categories possessing this, and verify the conjecture in a number of important cases. In particular we say a category has property F if the associated braid group representations factor o ..."
Abstract

Cited by 19 (9 self)
 Add to MetaCart
(Show Context)
We introduce a finiteness property for braided fusion categories, describe a conjecture that would characterize categories possessing this, and verify the conjecture in a number of important cases. In particular we say a category has property F if the associated braid group representations factor over a finite group, and suggest that categories of integral FrobeniusPerron dimension are precisely those with property F.
From Quantum Groups to Unitary Modular Tensor Categories
 CONTEMPORARY MATHEMATICS
"... Modular tensor categories are generalizations of the representation categories of quantum groups at roots of unity axiomatizing the properties necessary to produce 3dimensional TQFTs. Although other constructions have since been found, quantum groups remain the most prolific source. Recently propos ..."
Abstract

Cited by 15 (8 self)
 Add to MetaCart
(Show Context)
Modular tensor categories are generalizations of the representation categories of quantum groups at roots of unity axiomatizing the properties necessary to produce 3dimensional TQFTs. Although other constructions have since been found, quantum groups remain the most prolific source. Recently proposed applications to quantum computing have provided an impetus to understand and describe these examples as explicitly as possible, especially those that are “physically feasible.” We survey the current status of the problem of producing unitary modular tensor categories from quantum groups, emphasizing explicit computations.
The classification of subfactors of index at most 5
"... Abstract. A subfactor is an inclusion N ⊂ M of von Neumann algebras with trivial centers. The simplest example comes from the fixed points of a group action MG ⊂M, and subfactors can be thought of as fixed points of more general grouplike algebraic structures. These algebraic structures are closely ..."
Abstract

Cited by 11 (5 self)
 Add to MetaCart
(Show Context)
Abstract. A subfactor is an inclusion N ⊂ M of von Neumann algebras with trivial centers. The simplest example comes from the fixed points of a group action MG ⊂M, and subfactors can be thought of as fixed points of more general grouplike algebraic structures. These algebraic structures are closely related to tensor categories and have played important roles in knot theory, quantum groups, statistical mechanics, and topological quantum field theory. There’s a measure of size of a subfactor, called the index. Remarkably the values of the index below 4 are quantized, which suggests that it may be possible to classify subfactors of small index. Subfactors of index at most 4 were classified in the ’80s and early ’90s. The possible index values above 4 are not quantized, but once you exclude a certain family it turns out that again the possibilities are quantized. Recently the classification of subfactors has been extended up to index 5, and (outside of the infinite families) there are only 10 subfactors of index between 4 and 5. We give a summary of the key ideas in this classification and discuss what is known about these special small subfactors. Contents
Embedding ergodic actions of compact quantum groups on C∗–algebras into quotient spaces
 INT. J. MATH
, 2006
"... The notion of compact quantum subgroup is revisited and an alternative definition is given. Induced representations are considered and a Frobenius reciprocity theorem is obtained. A relationship between ergodic actions of compact quantum groups on C∗–algebras and topological transitivity is investig ..."
Abstract

Cited by 11 (6 self)
 Add to MetaCart
The notion of compact quantum subgroup is revisited and an alternative definition is given. Induced representations are considered and a Frobenius reciprocity theorem is obtained. A relationship between ergodic actions of compact quantum groups on C∗–algebras and topological transitivity is investigated. A sufficient condition for embedding such actions in quantum quotient spaces is obtained.
On a family of nonunitarizable ribbon categories
 Math Z
, 2005
"... Abstract. We consider several families of categories. The first are quotients of H. Andersen’s tilting module categories for quantum groups of Lie type B at odd roots of unity. The second consists of categories of type BC constructed from idempotents in BMWalgebras. Our main result is to show that ..."
Abstract

Cited by 10 (5 self)
 Add to MetaCart
(Show Context)
Abstract. We consider several families of categories. The first are quotients of H. Andersen’s tilting module categories for quantum groups of Lie type B at odd roots of unity. The second consists of categories of type BC constructed from idempotents in BMWalgebras. Our main result is to show that these families coincide as braided tensor categories using a recent theorem of Tuba and Wenzl. By appealing to similar results of Blanchet and Beliakova we obtain another interesting equivalence with these two families of categories and the quantum group categories of Lie type C at odd roots of unity. The morphism spaces in these categories can be equipped with a Hermitian form, and we are able to show that these categories are never unitary, and no braided tensor category sharing the Grothendieck semiring common to these families is unitarizable. 1.