Results 1  10
of
136
ANFIS: AdaptiveNetworkBased Fuzzy Inference System
, 1993
"... This paper presents the architecture and learning procedure underlying ANFIS (AdaptiveNetwork based Fuzzy Inference System), a fuzzy inference system implemented in the framework of adaptive networks. By using a hybrid learning procedure, the proposed ANFIS can construct an inputoutput mapping bas ..."
Abstract

Cited by 432 (5 self)
 Add to MetaCart
This paper presents the architecture and learning procedure underlying ANFIS (AdaptiveNetwork based Fuzzy Inference System), a fuzzy inference system implemented in the framework of adaptive networks. By using a hybrid learning procedure, the proposed ANFIS can construct an inputoutput mapping based on both human knowledge (in the form of fuzzy ifthen rules) and stipulated inputoutput data pairs. In our simulation, we employ the ANFIS architecture to model nonlinear functions, identify nonlinear components onlinely in a control system, and predict a chaotic time series, all yielding remarkable results. Comparisons with artificail neural networks and earlier work on fuzzy modeling are listed and discussed. Other extensions of the proposed ANFIS and promising applications to automatic control and signal processing are also suggested. 1 Introduction System modeling based on conventional mathematical tools (e.g., differential equations) is not well suited for dealing with illdefine...
Complete discrete 2D Gabor transforms by neural networks for image analysis and compression
, 1988
"... AbstractA threelayered neural network is described for transforming twodimensional discrete signals into generalized nonorthogonal 2D “Gabor ” representations for image analysis, segmentation, and compression. These transforms are conjoint spatiahpectral representations [lo], [15], which provide ..."
Abstract

Cited by 373 (8 self)
 Add to MetaCart
AbstractA threelayered neural network is described for transforming twodimensional discrete signals into generalized nonorthogonal 2D “Gabor ” representations for image analysis, segmentation, and compression. These transforms are conjoint spatiahpectral representations [lo], [15], which provide a complete image description in terms of locally windowed 2D spectral coordinates embedded within global 2D spatial coordinates. Because intrinsic redundancies within images are extracted, the resulting image codes can be very compact. However, these conjoint transforms are inherently difficult to compute because t e elementary expansion functions are not orthogonal. One orthogonking approach developed for 1D signals by Bastiaans [SI, based on biorthonormal expansions, is restricted by constraints on the conjoint sampling rates and invariance of the windowing function, as well as by the fact that the auxiliary orthogonalizing functions are nonlocal infinite series. In the present “neural network ” approach, based
A Theory of Networks for Approximation and Learning
 Laboratory, Massachusetts Institute of Technology
, 1989
"... Learning an inputoutput mapping from a set of examples, of the type that many neural networks have been constructed to perform, can be regarded as synthesizing an approximation of a multidimensional function, that is solving the problem of hypersurface reconstruction. From this point of view, t ..."
Abstract

Cited by 194 (24 self)
 Add to MetaCart
Learning an inputoutput mapping from a set of examples, of the type that many neural networks have been constructed to perform, can be regarded as synthesizing an approximation of a multidimensional function, that is solving the problem of hypersurface reconstruction. From this point of view, this form of learning is closely related to classical approximation techniques, such as generalized splines and regularization theory. This paper considers the problems of an exact representation and, in more detail, of the approximation of linear and nonlinear mappings in terms of simpler functions of fewer variables. Kolmogorov's theorem concerning the representation of functions of several variables in terms of functions of one variable turns out to be almost irrelevant in the context of networks for learning. Wedevelop a theoretical framework for approximation based on regularization techniques that leads to a class of threelayer networks that we call Generalized Radial Basis Functions (GRBF), since they are mathematically related to the wellknown Radial Basis Functions, mainly used for strict interpolation tasks. GRBF networks are not only equivalent to generalized splines, but are also closely related to pattern recognition methods suchasParzen windows and potential functions and to several neural network algorithms, suchas Kanerva's associative memory,backpropagation and Kohonen's topology preserving map. They also haveaninteresting interpretation in terms of prototypes that are synthesized and optimally combined during the learning stage. The paper introduces several extensions and applications of the technique and discusses intriguing analogies with neurobiological data.
A resourceallocating network for function interpolation
 Neural Computation
, 1991
"... We have created a network that allocates a new computational unit whenever an unusual pattern is presented to the network. This network forms compact representations, yet learns easily and rapidly. The network can be used at any time in the learning process and the learning patterns do not have to b ..."
Abstract

Cited by 165 (2 self)
 Add to MetaCart
We have created a network that allocates a new computational unit whenever an unusual pattern is presented to the network. This network forms compact representations, yet learns easily and rapidly. The network can be used at any time in the learning process and the learning patterns do not have to be repeated. The units in this network respond to only a local region of the space of input values. The network learns by allocating new units and adjusting the parameters of existing units. If the network performs poorly on a presented pattern, then a new unit is allocated which corrects the response to the presented pattern. If the network performs well on a presented pattern, then the network parameters are updated using standard LMS gradient descent. We have obtained good results with our resourceallocating network (RAN). For predicting the Mackey Glass chaotic time series, our network learns much faster than do those using backpropagation and uses a comparable number of synapses. 1
Neurofuzzy modeling and control
 IEEE Proceedings
, 1995
"... Abstract  Fundamental and advanced developments in neurofuzzy synergisms for modeling and control are reviewed. The essential part of neurofuzzy synergisms comes from a common framework called adaptive networks, which uni es both neural networks and fuzzy models. The fuzzy models under the framew ..."
Abstract

Cited by 147 (1 self)
 Add to MetaCart
Abstract  Fundamental and advanced developments in neurofuzzy synergisms for modeling and control are reviewed. The essential part of neurofuzzy synergisms comes from a common framework called adaptive networks, which uni es both neural networks and fuzzy models. The fuzzy models under the framework of adaptive networks is called ANFIS (AdaptiveNetworkbased Fuzzy Inference System), which possess certain advantages over neural networks. We introduce the design methods for ANFIS in both modeling and control applications. Current problems and future directions for neurofuzzy approaches are also addressed. KeywordsFuzzy logic, neural networks, fuzzy modeling, neurofuzzy modeling, neurofuzzy control, ANFIS. I.
Gradient calculation for dynamic recurrent neural networks: a survey
 IEEE Transactions on Neural Networks
, 1995
"... Abstract  We survey learning algorithms for recurrent neural networks with hidden units, and put the various techniques into a common framework. We discuss xedpoint learning algorithms, namely recurrent backpropagation and deterministic Boltzmann Machines, and non xedpoint algorithms, namely backp ..."
Abstract

Cited by 135 (3 self)
 Add to MetaCart
Abstract  We survey learning algorithms for recurrent neural networks with hidden units, and put the various techniques into a common framework. We discuss xedpoint learning algorithms, namely recurrent backpropagation and deterministic Boltzmann Machines, and non xedpoint algorithms, namely backpropagation through time, Elman's history cuto, and Jordan's output feedback architecture. Forward propagation, an online technique that uses adjoint equations, and variations thereof, are also discussed. In many cases, the uni ed presentation leads to generalizations of various sorts. We discuss advantages and disadvantages of temporally continuous neural networks in contrast to clocked ones, continue with some \tricks of the trade" for training, using, and simulating continuous time and recurrent neural networks. We present somesimulations, and at the end, address issues of computational complexity and learning speed.
Neural Net Architectures for Temporal Sequence Processing
, 1994
"... I present a general taxonomy of neural net architectures for processing timevarying patterns. This taxonomy subsumes many existing architectures in the literature, and points to several promising architectures that have yet to be examined. Any architecture that processes timevarying patterns requir ..."
Abstract

Cited by 106 (0 self)
 Add to MetaCart
I present a general taxonomy of neural net architectures for processing timevarying patterns. This taxonomy subsumes many existing architectures in the literature, and points to several promising architectures that have yet to be examined. Any architecture that processes timevarying patterns requires two conceptually distinct components: a shortterm memory that holds on to relevant past events and an associator that uses the shortterm memory to classify or predict. My taxonomy is based on a characterization of shortterm memory models along the dimensions of form, content, and adaptability. Experiments on predicting future values of a financial time series (US dollarSwiss franc exchange rates) are presented using several alternative memory models. The results of these experiments serve as a baseline against which more sophisticated architectures can be compared. Neural networks have proven to be a promising alternative to traditional techniques for nonlinear temporal prediction t...
NeuroAnimator: Fast Neural Network Emulation and Control of PhysicsBased Models
, 1998
"... Animation through the numerical simulation of physicsbased graphics models offers unsurpassed realism, but it can be computationally demanding. Likewise, finding controllers that enable physicsbased models to produce desired animations usually entails formidable computational cost. This paper de ..."
Abstract

Cited by 84 (3 self)
 Add to MetaCart
Animation through the numerical simulation of physicsbased graphics models offers unsurpassed realism, but it can be computationally demanding. Likewise, finding controllers that enable physicsbased models to produce desired animations usually entails formidable computational cost. This paper demonstrates the possibility of replacing the numerical simulation and control of model dynamics with a dramatically more efficient alternative. In particular, we propose the NeuroAnimator, a novel approach to creating physically realistic animation that exploits neural networks. NeuroAnimators are automatically trained offline to emulate physical dynamics through the observation of physicsbased models in action. Depending on the model, its neural network emulator can yield physically realistic animation one or two orders of magnitude faster than conventional numerical simulation. Furthermore, by exploiting the network structure of the NeuroAnimator, we introduce a fast algorithm for learning controllers that enables either physicsbased models or their neural network emulators to synthesize motions satisfying prescribed animation goals. We demonstrate NeuroAnimators for passive and active (actuated) rigid body, articulated, and deformable physicsbased models.
Improving Regression Estimation: Averaging Methods for Variance Reduction with Extensions to General Convex Measure Optimization
, 1993
"... ..."
Nonlinear Gated Experts for Time Series: Discovering Regimes and Avoiding Overfitting
, 1995
"... this paper: ftp://ftp.cs.colorado.edu/pub/TimeSeries/MyPapers/experts.ps.Z, ..."
Abstract

Cited by 81 (5 self)
 Add to MetaCart
this paper: ftp://ftp.cs.colorado.edu/pub/TimeSeries/MyPapers/experts.ps.Z,