Results 1  10
of
29
An oracle builder’s toolkit
, 2002
"... We show how to use various notions of genericity as tools in oracle creation. In particular, 1. we give an abstract definition of genericity that encompasses a large collection of different generic notions; 2. we consider a new complexity class AWPP, which contains BQP (quantum polynomial time), and ..."
Abstract

Cited by 47 (10 self)
 Add to MetaCart
We show how to use various notions of genericity as tools in oracle creation. In particular, 1. we give an abstract definition of genericity that encompasses a large collection of different generic notions; 2. we consider a new complexity class AWPP, which contains BQP (quantum polynomial time), and infer several strong collapses relative to SPgenerics; 3. we show that under additional assumptions these collapses also occur relative to Cohen generics; 4. we show that relative to SPgenerics, ULIN ∩ coULIN ̸ ⊆ DTIME(n k) for any k, where ULIN is unambiguous linear time, despite the fact that UP ∪ (NP ∩ coNP) ⊆ P relative to these generics; 5. we show that there is an oracle relative to which NP/1∩coNP/1 ̸ ⊆ (NP∩coNP)/poly; and 6. we use a specialized notion of genericity to create an oracle relative to which NP BPP ̸ ⊇ MA.
On the strength of Ramsey’s Theorem for pairs
 Journal of Symbolic Logic
, 2001
"... Abstract. We study the proof–theoretic strength and effective content denote Ramof the infinite form of Ramsey’s theorem for pairs. Let RT n k sey’s theorem for k–colorings of n–element sets, and let RT n < ∞ denote (∀k)RTn k. Our main result on computability is: For any n ≥ 2 and any computable (r ..."
Abstract

Cited by 42 (9 self)
 Add to MetaCart
Abstract. We study the proof–theoretic strength and effective content denote Ramof the infinite form of Ramsey’s theorem for pairs. Let RT n k sey’s theorem for k–colorings of n–element sets, and let RT n < ∞ denote (∀k)RTn k. Our main result on computability is: For any n ≥ 2 and any computable (recursive) k–coloring of the n–element sets of natural numbers, there is an infinite homogeneous set X with X ′ ′ ≤T 0 (n). Let I�n and B�n denote the �n induction and bounding schemes, respectively. Adapting the case n = 2 of the above result (where X is low2) to models is conservative of arithmetic enables us to show that RCA0 + I �2 + RT2 2 over RCA0 + I �2 for �1 1 statements and that RCA0 + I �3 + RT2 < ∞ is �1 1conservative over RCA0 + I �3. It follows that RCA0 + RT2 2 does not imply B �3. In contrast, J. Hirst showed that RCA0 + RT2 < ∞ does imply B �3, and we include a proof of a slightly strengthened version of this result. It follows that RT2 < ∞ is strictly stronger than RT2 2 over RC A0. 1.
Enumeration Reducibility, Nondeterministic Computations and Relative . . .
 RECURSION THEORY WEEK, OBERWOLFACH 1989, VOLUME 1432 OF LECTURE NOTES IN MATHEMATICS
, 1990
"... ..."
Definability in the Turing Degrees
 J. Symbolic Logic
, 1986
"... . Suppose that R is a countable relation on the Turing degrees. Then R can be defined in D, the Turing degrees with # T , by a first order formula with finitely many parameters. The parameters are built by means of a notion of forcing in which the conditions are essentially finite. The co ..."
Abstract

Cited by 19 (3 self)
 Add to MetaCart
. Suppose that R is a countable relation on the Turing degrees. Then R can be defined in D, the Turing degrees with # T , by a first order formula with finitely many parameters. The parameters are built by means of a notion of forcing in which the conditions are essentially finite. The conditions in the forcing partial specify finite initial segments of the generic reals and impose a infinite constraint on further extensions. In section 3, this result is applied to show that any elementary function from D to D is an automorphism. Other applications are given toward the rigidity question for D. By observing that a single jump is all that is needed to meet the relevant dense sets, it is also shown that the recursively enumerable degrees can be defined from finitely many parameters in the structure consisting of the degrees below 0 # with # T . 1. Introduction Definability has provided the most fruitful approach to understanding the modeltheoretic structure ...
The theory of the degrees below 0
 J. London Math. Soc
, 1981
"... Degree theory, that is the study of the structure of the Turing degrees (or degrees of unsolvability) has been divided by Simpson [24; §5] into two parts—global and local. By the global theory he means the study of general structural properties of 3d— the degrees as a partially ordered set or uppers ..."
Abstract

Cited by 18 (6 self)
 Add to MetaCart
Degree theory, that is the study of the structure of the Turing degrees (or degrees of unsolvability) has been divided by Simpson [24; §5] into two parts—global and local. By the global theory he means the study of general structural properties of 3d— the degrees as a partially ordered set or uppersemilattice. The local theory concerns
Local initial segments of the Turing degrees
 Bull. Symbolic Logic
, 2002
"... Abstract. Recent results on initial segments of the Turing degrees are presented, and some conjectures about initial segments that have implications for the existence of nontrivial automorphisms of the Turing degrees are indicated. §1. Introduction. This article concerns the algebraic study of the u ..."
Abstract

Cited by 6 (2 self)
 Add to MetaCart
Abstract. Recent results on initial segments of the Turing degrees are presented, and some conjectures about initial segments that have implications for the existence of nontrivial automorphisms of the Turing degrees are indicated. §1. Introduction. This article concerns the algebraic study of the upper semilattice of Turing degrees. Upper semilattices of interest in this regard tend to have a least element, hence for convenience the following definition is made. Definition 1.1. A unital semilattice (usl) is a structure L = (L, ∗, e) satisfying the following equalities for all a, b, c ∈ L.
Degree structures: Local and global investigations
 Bulletin of Symbolic Logic
"... $1. Introduction. The occasion of a retiring presidential address seems like a time to look back, take stock and perhaps look ahead. ..."
Abstract

Cited by 6 (2 self)
 Add to MetaCart
$1. Introduction. The occasion of a retiring presidential address seems like a time to look back, take stock and perhaps look ahead.
Double Jump Inversions and Strong Minimal Covers in the Turing Degrees
, 2004
"... Decidability problems for (fragments of) the theory of the structure D of Turing degrees, form a wide and interesting class, much of which is yet unsolved. Lachlan showed in 1968 that the first order theory of D with the Turing reducibility relation is undecidable. Later results concerned the decida ..."
Abstract

Cited by 4 (0 self)
 Add to MetaCart
Decidability problems for (fragments of) the theory of the structure D of Turing degrees, form a wide and interesting class, much of which is yet unsolved. Lachlan showed in 1968 that the first order theory of D with the Turing reducibility relation is undecidable. Later results concerned the decidability (or undecidability) of fragments of this theory, and of other theories obtained by extending the language (e.g. with 0 or with the Turing jump operator). Proofs of these results often hinge on the ability to embed certain classes of structures (lattices, jumphierarchies, etc.) in certain ways, into the structure of Turing degrees. The first part of the dissertation presents two results which concern embeddings onto initial segments of D with known double jumps, in other words a double jump inversion of certain degree structures onto initial segments. These results may prove to be useful tools in uncovering decidability results for (fragments of) the theory of the Turing degrees in languages containing the double jump operator. The second part of the dissertation relates to the problem of characterizing the Turing degrees which have a strong minimal cover, an issue first raised by Spector in 1956. Ishmukhametov solved the problem for the recursively enumerable degrees, by showing that those which have a strong minimal cover are exactly the r.e. weakly recursive degrees. Here we show that this characterization fails outside the r.e. degrees, and also construct a minimal degree below 0 ′ which is not weakly recursive, thereby answering a question from Ishmukhametov’s paper.
Conjectures and Questions from Gerald Sacks’s Degrees of Unsolvability
 Archive for Mathematical Logic
, 1993
"... We describe the important role that the conjectures and questions posed at the end of the two editions of Gerald Sacks's Degrees of Unsolvability have had in the development of recursion theory over the past thirty years. Gerald Sacks has had a major influence on the development of logic, particular ..."
Abstract

Cited by 4 (1 self)
 Add to MetaCart
We describe the important role that the conjectures and questions posed at the end of the two editions of Gerald Sacks's Degrees of Unsolvability have had in the development of recursion theory over the past thirty years. Gerald Sacks has had a major influence on the development of logic, particularly recursion theory, over the past thirty years through his research, writing and teaching. Here, I would like to concentrate on just one instance of that influence that I feel has been of special significance to the study of the degrees of unsolvability in general and on my own work in particular the conjectures and questions posed at the end of the two editions of Sacks's first book, the classic monograph Degrees of Unsolvability (Annals
A Direct Construction of a Minimal Recursively Enumerable TruthTable Degree
"... This paper will appear in the Proceedings of the Conference on Recursion Theory held at Oberwolfach, March 2024, 1989. ..."
Abstract

Cited by 4 (2 self)
 Add to MetaCart
This paper will appear in the Proceedings of the Conference on Recursion Theory held at Oberwolfach, March 2024, 1989.