Results 1  10
of
53
Some Connections between Bounded Query Classes and NonUniform Complexity
 In Proceedings of the 5th Structure in Complexity Theory Conference
, 1990
"... This paper is dedicated to the memory of Ronald V. Book, 19371997. ..."
Abstract

Cited by 71 (23 self)
 Add to MetaCart
This paper is dedicated to the memory of Ronald V. Book, 19371997.
Degrees of random sets
, 1991
"... An explicit recursiontheoretic definition of a random sequence or random set of natural numbers was given by MartinLöf in 1966. Other approaches leading to the notions of nrandomness and weak nrandomness have been presented by Solovay, Chaitin, and Kurtz. We investigate the properties of nrando ..."
Abstract

Cited by 46 (4 self)
 Add to MetaCart
An explicit recursiontheoretic definition of a random sequence or random set of natural numbers was given by MartinLöf in 1966. Other approaches leading to the notions of nrandomness and weak nrandomness have been presented by Solovay, Chaitin, and Kurtz. We investigate the properties of nrandom and weakly nrandom sequences with an emphasis on the structure of their Turing degrees. After an introduction and summary, in Chapter II we present several equivalent definitions of nrandomness and weak nrandomness including a new definition in terms of a forcing relation analogous to the characterization of ngeneric sequences in terms of Cohen forcing. We also prove that, as conjectured by Kurtz, weak nrandomness is indeed strictly weaker than nrandomness. Chapter III is concerned with intrinsic properties of nrandom sequences. The main results are that an (n + 1)random sequence A satisfies the condition A (n) ≡T A⊕0 (n) (strengthening a result due originally to Sacks) and that nrandom sequences satisfy a number of strong independence properties, e.g., if A ⊕ B is nrandom then A is nrandom relative to B. It follows that any countable distributive lattice can be embedded
Parameter Definability in the Recursively Enumerable Degrees
"... The biinterpretability conjecture for the r.e. degrees asks whether, for each sufficiently large k, the # k relations on the r.e. degrees are uniformly definable from parameters. We solve a weaker version: for each k >= 7, the k relations bounded from below by a nonzero degree are uniformly definabl ..."
Abstract

Cited by 34 (13 self)
 Add to MetaCart
The biinterpretability conjecture for the r.e. degrees asks whether, for each sufficiently large k, the # k relations on the r.e. degrees are uniformly definable from parameters. We solve a weaker version: for each k >= 7, the k relations bounded from below by a nonzero degree are uniformly definable. As applications, we show that...
On the Structure of Degrees of Inferability
 Journal of Computer and System Sciences
, 1993
"... Degrees of inferability have been introduced to measure the learning power of inductive inference machines which have access to an oracle. The classical concept of degrees of unsolvability measures the computing power of oracles. In this paper we determine the relationship between both notions. ..."
Abstract

Cited by 32 (19 self)
 Add to MetaCart
Degrees of inferability have been introduced to measure the learning power of inductive inference machines which have access to an oracle. The classical concept of degrees of unsolvability measures the computing power of oracles. In this paper we determine the relationship between both notions. 1 Introduction We consider learning of classes of recursive functions within the framework of inductive inference [21]. A recent theme is the study of inductive inference machines with oracles ([8, 10, 11, 17, 24] and tangentially [12]; cf. [10] for a comprehensive introduction and a collection of all previous results.) The basic question is how the information content of the oracle (technically: its Turing degree) relates with its learning power (technically: its inference degreedepending on the underlying inference criterion). In this paper a definitive answer is obtained for the case of recursively enumerable oracles and the case when only finitely many queries to the oracle are allo...
On initial segment complexity and degrees of randomness
 Trans. Amer. Math. Soc
"... Abstract. One approach to understanding the fine structure of initial segment complexity was introduced by Downey, Hirschfeldt and LaForte. They define X ≤K Y to mean that (∀n) K(X ↾ n) ≤ K(Y ↾ n) +O(1). The equivalence classes under this relation are the Kdegrees. We prove that if X ⊕ Y is 1rand ..."
Abstract

Cited by 32 (6 self)
 Add to MetaCart
Abstract. One approach to understanding the fine structure of initial segment complexity was introduced by Downey, Hirschfeldt and LaForte. They define X ≤K Y to mean that (∀n) K(X ↾ n) ≤ K(Y ↾ n) +O(1). The equivalence classes under this relation are the Kdegrees. We prove that if X ⊕ Y is 1random, then X and Y have no upper bound in the Kdegrees (hence, no join). We also prove that nrandomness is closed upward in the Kdegrees. Our main tool is another structure intended to measure the degree of randomness of real numbers: the vLdegrees. Unlike the Kdegrees, many basic properties of the vLdegrees are easy to prove. We show that X ≤K Y implies X ≤vL Y, so some results can be transferred. The reverse implication is proved to fail. The same analysis is also done for ≤C, the analogue of ≤K for plain Kolmogorov complexity. Two other interesting results are included. First, we prove that for any Z ∈ 2ω, a 1random real computable from a 1Zrandom real is automatically 1Zrandom. Second, we give a plain Kolmogorov complexity characterization of 1randomness. This characterization is related to our proof that X ≤C Y implies X ≤vL Y. 1.
Enumeration Reducibility, Nondeterministic Computations and Relative . . .
 RECURSION THEORY WEEK, OBERWOLFACH 1989, VOLUME 1432 OF LECTURE NOTES IN MATHEMATICS
, 1990
"... ..."
On Presentations of Algebraic Structures
 in Complexity, Logic and Recursion Theory
, 1995
"... This paper is an expanded version of an part of a series of invited lectures given by the author during May 1995 in Siena, Italy to the COLORET II conference. This work is partially supported by Victoria University IGC and the Marsden Fund for Basic Science under grant VIC509. This paper is dedicat ..."
Abstract

Cited by 17 (6 self)
 Add to MetaCart
This paper is an expanded version of an part of a series of invited lectures given by the author during May 1995 in Siena, Italy to the COLORET II conference. This work is partially supported by Victoria University IGC and the Marsden Fund for Basic Science under grant VIC509. This paper is dedicated to the memory of my friend and teacher Chris Ash who contributed so much to effective structure theory and who left us far too young early in 1995
Cellular Automata and Intermediate Degrees
 Theoretical Computer Science
, 2002
"... We study a classi cation of cellular automata based on the Turing degree of the orbits of the automaton. The diculty of determining the membership of a cellular automaton in any one of these classes is characterized in the arithmetical hierarchy. Key words: Cellular automata, intermediate degrees ..."
Abstract

Cited by 17 (11 self)
 Add to MetaCart
We study a classi cation of cellular automata based on the Turing degree of the orbits of the automaton. The diculty of determining the membership of a cellular automaton in any one of these classes is characterized in the arithmetical hierarchy. Key words: Cellular automata, intermediate degrees 1 Classi cations The study of cellular automata leads to many computationally hard problems. Except for a few select properties, such as injectivity, openness or surjectivity of the global map of a onedimensional cellular automaton, most important features of cellular automata are undecidable. Indeed, when phrased as decision problems, it turns out that questions about natural properties of cellular automata are typically complete in their respective complexity classes. In all cases, the diculties arise from the fact that cellular automata are computationally universal and can be used to simulate, say, universal Turing machines. Thus it is not surprising that any general classi cation of cellular automata meets with considerable diculties. The heuristic classi cation proposed by Wolfram in [11,14] attempts to distinguish between cellular automata on the basis of the structure of typical orbits of con gurations under long term evolution. Wolfram's classi cation is based on extensive simulations of onedimensional cellular automata and employs clearly discernible visual patterns. Briey, Wolfram's classes can be described thus: Class 1: Con gurations evolve to a xed, homogeneous state.
The Baire category theorem in weak subsystems of secondorder arithmetic
 THE JOURNAL OF SYMBOLIC LOGIC
, 1993
"... ..."
On the Structure of Low Sets
 PROC. 10TH STRUCTURE IN COMPLEXITY THEORY CONFERENCE, IEEE
, 1995
"... Over a decade ago, Schöning introduced the concept of lowness into structural complexity theory. Since then a large body of results has been obtained classifying various complexity classes according to their lowness properties. In this paper we highlight some of the more recent advances on selected ..."
Abstract

Cited by 10 (2 self)
 Add to MetaCart
Over a decade ago, Schöning introduced the concept of lowness into structural complexity theory. Since then a large body of results has been obtained classifying various complexity classes according to their lowness properties. In this paper we highlight some of the more recent advances on selected topics in the area. Among the lowness properties we consider are polynomialsize circuit complexity, membership comparability, approximability, selectivity, and cheatability. Furthermore, we review some of the recent results concerning lowness for counting classes.