Results 1 - 10
of
414
An introduction to ROC analysis.
- Pattern Recognition Letters,
, 2006
"... Abstract Receiver operating characteristics (ROC) graphs are useful for organizing classifiers and visualizing their performance. ROC graphs are commonly used in medical decision making, and in recent years have been used increasingly in machine learning and data mining research. Although ROC graph ..."
Abstract
-
Cited by 1065 (1 self)
- Add to MetaCart
(Show Context)
Abstract Receiver operating characteristics (ROC) graphs are useful for organizing classifiers and visualizing their performance. ROC graphs are commonly used in medical decision making, and in recent years have been used increasingly in machine learning and data mining research. Although ROC graphs are apparently simple, there are some common misconceptions and pitfalls when using them in practice. The purpose of this article is to serve as an introduction to ROC graphs and as a guide for using them in research.
Statistical Comparisons of Classifiers over Multiple Data Sets
, 2006
"... While methods for comparing two learning algorithms on a single data set have been scrutinized for quite some time already, the issue of statistical tests for comparisons of more algorithms on multiple data sets, which is even more essential to typical machine learning studies, has been all but igno ..."
Abstract
-
Cited by 744 (0 self)
- Add to MetaCart
While methods for comparing two learning algorithms on a single data set have been scrutinized for quite some time already, the issue of statistical tests for comparisons of more algorithms on multiple data sets, which is even more essential to typical machine learning studies, has been all but ignored. This article reviews the current practice and then theoretically and empirically examines several suitable tests. Based on that, we recommend a set of simple, yet safe and robust non-parametric tests for statistical comparisons of classifiers: the Wilcoxon signed ranks test for comparison of two classifiers and the Friedman test with the corresponding post-hoc tests for comparison of more classifiers over multiple data sets. Results of the latter can also be neatly presented with the newly introduced CD (critical difference) diagrams.
SMOTE: Synthetic Minority Over-sampling Technique
- Journal of Artificial Intelligence Research
, 2002
"... An approach to the construction of classifiers from imbalanced datasets is described. A dataset is imbalanced if the classification categories are not approximately equally represented. Often real-world data sets are predominately composed of ``normal'' examples with only a small percentag ..."
Abstract
-
Cited by 634 (27 self)
- Add to MetaCart
(Show Context)
An approach to the construction of classifiers from imbalanced datasets is described. A dataset is imbalanced if the classification categories are not approximately equally represented. Often real-world data sets are predominately composed of ``normal'' examples with only a small percentage of ``abnormal'' or ``interesting'' examples. It is also the case that the cost of misclassifying an abnormal (interesting) example as a normal example is often much higher than the cost of the reverse error. Under-sampling of the majority (normal) class has been proposed as a good means of increasing the sensitivity of a classifier to the minority class. This paper shows that a combination of our method of over-sampling the minority (abnormal) class and under-sampling the majority (normal) class can achieve better classifier performance (in ROC space) than only under-sampling the majority class. This paper also shows that a combination of our method of over-sampling the minority class and under-sampling the majority class can achieve better classifier performance (in ROC space) than varying the loss ratios in Ripper or class priors in Naive Bayes. Our method of over-sampling the minority class involves creating synthetic minority class examples. Experiments are performed using C4.5, Ripper and a Naive Bayes classifier. The method is evaluated using the area under the Receiver Operating Characteristic curve (AUC) and the ROC convex hull strategy.
The Relationship Between Precision-Recall and ROC Curves
- In ICML ’06: Proceedings of the 23rd international conference on Machine learning
, 2006
"... Receiver Operator Characteristic (ROC) curves are commonly used to present results for binary decision problems in machine learning. However, when dealing with highly skewed datasets, Precision-Recall (PR) curves give a more informative picture of an algorithm’s performance. We show that a deep conn ..."
Abstract
-
Cited by 415 (4 self)
- Add to MetaCart
(Show Context)
Receiver Operator Characteristic (ROC) curves are commonly used to present results for binary decision problems in machine learning. However, when dealing with highly skewed datasets, Precision-Recall (PR) curves give a more informative picture of an algorithm’s performance. We show that a deep connection exists between ROC space and PR space, such that a curve dominates in ROC space if and only if it dominates in PR space. A corollary is the notion of an achievable PR curve, which has properties much like the convex hull in ROC space; we show an efficient algorithm for computing this curve. Finally, we also note differences in the two types of curves are significant for algorithm design. For example, in PR space it is incorrect to linearly interpolate between points. Furthermore, algorithms that optimize the area under the ROC curve are not guaranteed to optimize the area under the PR curve. 1.
MetaCost: A General Method for Making Classifiers Cost-Sensitive
- In Proceedings of the Fifth International Conference on Knowledge Discovery and Data Mining
, 1999
"... Research in machine learning, statistics and related fields has produced a wide variety of algorithms for classification. However, most of these algorithms assume that all errors have the same cost, which is seldom the case in KDD prob- lems. Individually making each classification learner costsensi ..."
Abstract
-
Cited by 415 (4 self)
- Add to MetaCart
(Show Context)
Research in machine learning, statistics and related fields has produced a wide variety of algorithms for classification. However, most of these algorithms assume that all errors have the same cost, which is seldom the case in KDD prob- lems. Individually making each classification learner costsensitive is laborious, and often non-trivial. In this paper we propose a principled method for making an arbitrary classifier cost-sensitive by wrapping a cost-minimizing procedure around it. This procedure, called MetaCost, treats the underlying classifier as a black box, requiring no knowledge of its functioning or change to it. Unlike stratification, MetaCost is applicable to any number of classes and to arbitrary cost matrices. Empirical trials on a large suite of benchmark databases show that MetaCost almost always produces large cost reductions compared to the cost-blind classifier used (C4.5RULES) and to two forms of stratification. Further tests identify the key components of MetaCost and those that can be varied without substantial loss. Experiments on a larger database indicate that MetaCost scales well.
ROC Graphs: Notes and Practical Considerations for Researchers
, 2004
"... Receiver Operating Characteristics (ROC) graphs are a useful technique for organizing classifiers and visualizing their performance. ROC graphs are commonly used in medical decision making, and in recent years have been increasingly adopted in the machine learning and data mining research communitie ..."
Abstract
-
Cited by 388 (1 self)
- Add to MetaCart
Receiver Operating Characteristics (ROC) graphs are a useful technique for organizing classifiers and visualizing their performance. ROC graphs are commonly used in medical decision making, and in recent years have been increasingly adopted in the machine learning and data mining research communities. Although ROC graphs are apparently simple, there are some common misconceptions and pitfalls when using them in practice. This article serves both as a tutorial introduction to ROC graphs and as a practical guide for using them in research.
Robust Classification for Imprecise Environments
, 1989
"... In real-world environments it is usually difficult to specify target operating conditions precisely. This uncertainty makes building robust classification systems problematic. We present a method for the comparison of classifier performance that is robust to imprecise class distributions and misclas ..."
Abstract
-
Cited by 341 (15 self)
- Add to MetaCart
(Show Context)
In real-world environments it is usually difficult to specify target operating conditions precisely. This uncertainty makes building robust classification systems problematic. We present a method for the comparison of classifier performance that is robust to imprecise class distributions and misclassification costs. The ROC convex hull method combines techniques from ROC analysis, decision analysis and computational geometry, and adapts them to the particulars of analyzing learned classifiers. The method is efficient and incremental, minimizes the management of classifier performance data, and allows for clear visual comparisons and sensitivity analyses. We then show that it is possible to build a hybrid classifier that will perform at least as well as the best available classifier for any target conditions. This robust performance extends across a wide variety of comparison frameworks, including the optimization of metrics such as accuracy, expected cost, lift, precision, recall, and ...
Learning from imbalanced data
- IEEE Trans. on Knowledge and Data Engineering
, 2009
"... Abstract—With the continuous expansion of data availability in many large-scale, complex, and networked systems, such as surveillance, security, Internet, and finance, it becomes critical to advance the fundamental understanding of knowledge discovery and analysis from raw data to support decision-m ..."
Abstract
-
Cited by 260 (6 self)
- Add to MetaCart
(Show Context)
Abstract—With the continuous expansion of data availability in many large-scale, complex, and networked systems, such as surveillance, security, Internet, and finance, it becomes critical to advance the fundamental understanding of knowledge discovery and analysis from raw data to support decision-making processes. Although existing knowledge discovery and data engineering techniques have shown great success in many real-world applications, the problem of learning from imbalanced data (the imbalanced learning problem) is a relatively new challenge that has attracted growing attention from both academia and industry. The imbalanced learning problem is concerned with the performance of learning algorithms in the presence of underrepresented data and severe class distribution skews. Due to the inherent complex characteristics of imbalanced data sets, learning from such data requires new understandings, principles, algorithms, and tools to transform vast amounts of raw data efficiently into information and knowledge representation. In this paper, we provide a comprehensive review of the development of research in learning from imbalanced data. Our focus is to provide a critical review of the nature of the problem, the state-of-the-art technologies, and the current assessment metrics used to evaluate learning performance under the imbalanced learning scenario. Furthermore, in order to stimulate future research in this field, we also highlight the major opportunities and challenges, as well as potential important research directions for learning from imbalanced data. Index Terms—Imbalanced learning, classification, sampling methods, cost-sensitive learning, kernel-based learning, active learning, assessment metrics. Ç
A Geometric Framework for Unsupervised Anomaly Detection: Detecting Intrusions in Unlabeled Data
- Applications of Data Mining in Computer Security
, 2002
"... Abstract Most current intrusion detection systems employ signature-based methods or data mining-based methods which rely on labeled training data. This training data is typically expensive to produce. We present a new geometric framework for unsupervised anomaly detection, which are algorithms that ..."
Abstract
-
Cited by 238 (9 self)
- Add to MetaCart
Abstract Most current intrusion detection systems employ signature-based methods or data mining-based methods which rely on labeled training data. This training data is typically expensive to produce. We present a new geometric framework for unsupervised anomaly detection, which are algorithms that are designed to process unlabeled data. In our framework, data elements are mapped to a feature space which is typically a vector space! d. Anomalies are detected by determining which points lies in sparse
ROC graphs: Notes and practical considerations for data mining researchers
, 2003
"... Receiver Operating Characteristics (ROC) graphs are a useful technique for organizing classifiers and visualizing their performance. ROC graphs are commonly used in medical decision making, and in recent years have been increasingly adopted in the machine learning and data mining research communitie ..."
Abstract
-
Cited by 206 (0 self)
- Add to MetaCart
Receiver Operating Characteristics (ROC) graphs are a useful technique for organizing classifiers and visualizing their performance. ROC graphs are commonly used in medical decision making, and in recent years have been increasingly adopted in the machine learning and data mining research communities. Although ROC graphs are apparently simple, there are some common misconceptions and pitfalls when using them in practice. This article serves both as a tutorial introduction to ROC graphs and as a practical guide for using them in research. Keywords: 1