Results 1 
6 of
6
Asymptotic semismoothness probabilities
 Mathematics of computation
, 1996
"... Abstract. We call an integer semismooth with respect to y and z if each of its prime factors is ≤ y, and all but one are ≤ z. Such numbers are useful in various factoring algorithms, including the quadratic sieve. Let G(α, β)bethe asymptotic probability that a random integer n is semismooth with res ..."
Abstract

Cited by 26 (2 self)
 Add to MetaCart
(Show Context)
Abstract. We call an integer semismooth with respect to y and z if each of its prime factors is ≤ y, and all but one are ≤ z. Such numbers are useful in various factoring algorithms, including the quadratic sieve. Let G(α, β)bethe asymptotic probability that a random integer n is semismooth with respect to n β and n α. We present new recurrence relations for G and related functions. We then give numerical methods for computing G,tablesofG, and estimates for the error incurred by this asymptotic approximation. 1.
On the asymptotic distribution of large prime factors
 J. London Math. Soc
, 1993
"... A random integer N, drawn uniformly from the set {1,2,..., n), has a prime factorization of the form N = a1a2...aM where ax ^ a2>... ^ aM. We establish the asymptotic distribution, as «» • oo, of the vector A(«) = (loga,/logiV: i:> 1) in a transparent manner. By randomly reordering the comp ..."
Abstract

Cited by 20 (0 self)
 Add to MetaCart
(Show Context)
A random integer N, drawn uniformly from the set {1,2,..., n), has a prime factorization of the form N = a1a2...aM where ax ^ a2>... ^ aM. We establish the asymptotic distribution, as «» • oo, of the vector A(«) = (loga,/logiV: i:> 1) in a transparent manner. By randomly reordering the components of A(«), in a sizebiased manner, we obtain a new vector B(n) whose asymptotic distribution is the GEM distribution with parameter 1; this is a distribution on the infinitedimensional simplex of vectors (xv x2,...) having nonnegative components with unit sum. Using a standard continuity argument, this entails the weak convergence of A(/i) to the corresponding PoissonDirichlet distribution on this simplex; this result was obtained by Billingsley [3]. 1.
Arbitrarily Tight Bounds On The Distribution Of Smooth Integers
 Proceedings of the Millennial Conference on Number Theory
, 2002
"... This paper presents lower bounds and upper bounds on the distribution of smooth integers; builds an algebraic framework for the bounds; shows how the bounds can be computed at extremely high speed using FFTbased powerseries exponentiation; explains how one can choose the parameters to achieve ..."
Abstract

Cited by 7 (2 self)
 Add to MetaCart
(Show Context)
This paper presents lower bounds and upper bounds on the distribution of smooth integers; builds an algebraic framework for the bounds; shows how the bounds can be computed at extremely high speed using FFTbased powerseries exponentiation; explains how one can choose the parameters to achieve any desired level of accuracy; and discusses several generalizations.
Asymptotic Semismoothness Probabilities
"... Abstract We call an integer semismooth with respect to y and z if each of its prime factors is ^ y, and all but one are ^ z. Such numbers are useful in various factoring algorithms, including the quadratic sieve. Let G(ff; fi) be the asymptotic probability that a random integer n is semismooth with ..."
Abstract
 Add to MetaCart
(Show Context)
Abstract We call an integer semismooth with respect to y and z if each of its prime factors is ^ y, and all but one are ^ z. Such numbers are useful in various factoring algorithms, including the quadratic sieve. Let G(ff; fi) be the asymptotic probability that a random integer n is semismooth with respect to nfi and nff. We present new recurrence relations for G and related functions. We then give numerical methods for computing G, tables of G, and estimates for the error incurred by this asymptotic approximation.