Results 1 
6 of
6
Asymptotic semismoothness probabilities
 Mathematics of computation
, 1996
"... Abstract. We call an integer semismooth with respect to y and z if each of its prime factors is ≤ y, and all but one are ≤ z. Such numbers are useful in various factoring algorithms, including the quadratic sieve. Let G(α, β)bethe asymptotic probability that a random integer n is semismooth with res ..."
Abstract

Cited by 22 (1 self)
 Add to MetaCart
Abstract. We call an integer semismooth with respect to y and z if each of its prime factors is ≤ y, and all but one are ≤ z. Such numbers are useful in various factoring algorithms, including the quadratic sieve. Let G(α, β)bethe asymptotic probability that a random integer n is semismooth with respect to n β and n α. We present new recurrence relations for G and related functions. We then give numerical methods for computing G,tablesofG, and estimates for the error incurred by this asymptotic approximation. 1.
Order computations in generic groups
 PHD THESIS MIT, SUBMITTED JUNE 2007. RESOURCES
, 2007
"... ..."
Approximating the number of integers without large prime factors
 Mathematics of Computation
, 2004
"... Abstract. Ψ(x, y) denotes the number of positive integers ≤ x and free of prime factors>y. Hildebrand and Tenenbaum gave a smooth approximation formula for Ψ(x, y) in the range (log x) 1+ɛ
Abstract

Cited by 3 (0 self)
 Add to MetaCart
Abstract. Ψ(x, y) denotes the number of positive integers ≤ x and free of prime factors>y. Hildebrand and Tenenbaum gave a smooth approximation formula for Ψ(x, y) in the range (log x) 1+ɛ <y ≤ x,whereɛ is a fixed positive number ≤ 1/2. In this paper, by modifying their approximation formula, we provide a fast algorithm to approximate Ψ(x, y). The computational complexity of this algorithm is O ( � (log x)(log y)). We give numerical results which show that this algorithm provides accurate estimates for Ψ(x, y) andisfaster than conventional methods such as algorithms exploiting Dickman’s function. 1.
The ThreeLargePrimes Variant of the Number Field Sieve
"... The Number Field Sieve (NFS) is the asymptotically fastest known factoring algorithm for large integers. This method was proposed by John Pollard [20] in 1988. Since then several variants have been implemented with the objective of improving the siever which is the most time consuming part of this ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
The Number Field Sieve (NFS) is the asymptotically fastest known factoring algorithm for large integers. This method was proposed by John Pollard [20] in 1988. Since then several variants have been implemented with the objective of improving the siever which is the most time consuming part of this method (but fortunately, also the easiest to parallelise). Pollard's original method allowed one large prime. After that the twolargeprimes variant led to substantial improvements [11]. In this paper we investigate whether the threelargeprimes variant may lead to any further improvement. We present theoretical expectations and experimental results. We assume the reader to be familiar with the NFS.
unknown title
, 2008
"... Smart matter consists of many sensors, computers and actuators embedded within materials. These microelectromechanical systems allow properties of the materials to be adjusted under program control. In this context, we study the behavior of several organizations for distributed control of unstable p ..."
Abstract
 Add to MetaCart
Smart matter consists of many sensors, computers and actuators embedded within materials. These microelectromechanical systems allow properties of the materials to be adjusted under program control. In this context, we study the behavior of several organizations for distributed control of unstable physical systems and show how a hierarchical organization is a reasonable compromise between rapid local responses with simple communication and the use of global knowledge. Using the properties of random matrices, we show that this holds not only in ideal situations but also when imperfections and delays are present in the system. We also introduce a new control organization, the multihierarchy, and show it is better than a hierarchy in achieving stability. The multihierarchy also has a position invariant response that can control disturbances at the appropriate scale and location. 1