Results 1 
2 of
2
The minimum description length principle in coding and modeling
 IEEE Trans. Inform. Theory
, 1998
"... Abstract — We review the principles of Minimum Description Length and Stochastic Complexity as used in data compression and statistical modeling. Stochastic complexity is formulated as the solution to optimum universal coding problems extending Shannon’s basic source coding theorem. The normalized m ..."
Abstract

Cited by 305 (12 self)
 Add to MetaCart
Abstract — We review the principles of Minimum Description Length and Stochastic Complexity as used in data compression and statistical modeling. Stochastic complexity is formulated as the solution to optimum universal coding problems extending Shannon’s basic source coding theorem. The normalized maximized likelihood, mixture, and predictive codings are each shown to achieve the stochastic complexity to within asymptotically vanishing terms. We assess the performance of the minimum description length criterion both from the vantage point of quality of data compression and accuracy of statistical inference. Context tree modeling, density estimation, and model selection in Gaussian linear regression serve as examples. Index Terms—Complexity, compression, estimation, inference, universal modeling.
Informationtheoretic asymptotics of Bayes methods
 IEEE Transactions on Information Theory
, 1990
"... AbstractIn the absence of knowledge of the true density function, Bayesian models take the joint density function for a sequence of n random variables to be an average of densities with respect to a prior. We examine the relative entropy distance D,, between the true density and the Bayesian densit ..."
Abstract

Cited by 107 (10 self)
 Add to MetaCart
AbstractIn the absence of knowledge of the true density function, Bayesian models take the joint density function for a sequence of n random variables to be an average of densities with respect to a prior. We examine the relative entropy distance D,, between the true density and the Bayesian density and show that the asymptotic distance is (d/2Xlogn)+ c, where d is the dimension of the parameter vector. Therefore, the relative entropy rate D,,/n converges to zero at rate (logn)/n. The constant c, which we explicitly identify, depends only on the prior density function and the Fisher information matrix evaluated at the true parameter value. Consequences are given for density estimation, universal data compression, composite hypothesis testing, and stockmarket portfolio selection. 1.