Results 1  10
of
44
The JumpRisk Premia Implicit in Options: Evidence from an Integrated TimeSeries Study
 Journal of Financial Economics
"... Abstract: This paper examines the joint time series of the S&P 500 index and nearthemoney shortdated option prices with an arbitragefree model, capturing both stochastic volatility and jumps. Jumprisk premia uncovered from the joint data respond quickly to market volatility, becoming more promi ..."
Abstract

Cited by 210 (1 self)
 Add to MetaCart
Abstract: This paper examines the joint time series of the S&P 500 index and nearthemoney shortdated option prices with an arbitragefree model, capturing both stochastic volatility and jumps. Jumprisk premia uncovered from the joint data respond quickly to market volatility, becoming more prominent during volatile markets. This form of jumprisk premia is important not only in reconciling the dynamics implied by the joint data, but also in explaining the volatility “smirks” of crosssectional options data.
A Study towards a Unified Approach to the Joint Estimation of Objective and Risk Neutral Measures for the Purpose of Options Valuation
, 1999
"... The purpose of this paper is to bridge two strands of the literature, one pertaining to the objectiveorphysical measure used to model the underlying asset and the other pertaining to the riskneutral measure used to price derivatives. We propose a generic procedure using simultaneously the fundame ..."
Abstract

Cited by 74 (4 self)
 Add to MetaCart
The purpose of this paper is to bridge two strands of the literature, one pertaining to the objectiveorphysical measure used to model the underlying asset and the other pertaining to the riskneutral measure used to price derivatives. We propose a generic procedure using simultaneously the fundamental price S t and a set of option contracts ### I it # i=1;m # where m # 1 and # I it is the BlackScholes implied volatility.We use Heston's #1993# model as an example and appraise univariate and multivariate estimation of the model in terms of pricing and hedging performance. Our results, based on the S&P 500 index contract, show that the univariate approach only involving options by and large dominates. Abyproduct of this #nding is that we uncover a remarkably simple volatility extraction #lter based on a polynomial lag structure of implied volatilities. The bivariate approachinvolving both the fundamental and an option appears useful when the information from the cash market ...
Estimation of stochastic volatility models via Monte Carlo Maximum Likelihood
, 1998
"... This paper discusses the Monte Carlo maximum likelihood method of estimating stochastic volatility (SV) models. The basic SV model can be expressed as a linear state space model with log chisquare disturbances. The likelihood function can be approximated arbitrarily accurately by decomposing it int ..."
Abstract

Cited by 64 (6 self)
 Add to MetaCart
This paper discusses the Monte Carlo maximum likelihood method of estimating stochastic volatility (SV) models. The basic SV model can be expressed as a linear state space model with log chisquare disturbances. The likelihood function can be approximated arbitrarily accurately by decomposing it into a Gaussian part, constructed by the Kalman filter, and a remainder function, whose expectation is evaluated by simulation. No modifications of this estimation procedure are required when the basic SV model is extended in a number of directions likely to arise in applied empirical research. This compares favorably with alternative approaches. The finite sample performance of the new estimator is shown to be comparable to the Monte Carlo Markov chain (MCMC) method.
Complete Models with Stochastic Volatility
, 1996
"... The paper proposes an original class of models for the continuous time price process of a financial security with nonconstant volatility. The idea is to define instantaneous volatility in terms of exponentiallyweighted moments of historic logprice. The instantaneous volatility is therefore driven ..."
Abstract

Cited by 42 (3 self)
 Add to MetaCart
The paper proposes an original class of models for the continuous time price process of a financial security with nonconstant volatility. The idea is to define instantaneous volatility in terms of exponentiallyweighted moments of historic logprice. The instantaneous volatility is therefore driven by the same stochastic factors as the price process, so that unlike many other models of nonconstant volatility, it is not necessary to introduce additional sources of randomness. Thus the market is complete and there are unique, preferenceindependent options prices. We find a partial differential equation for the price of a European Call Option. Smiles and skews are found in the resulting plots of implied volatility. Keywords: Option pricing, stochastic volatility, complete markets, smiles. Acknowledgement. It is a pleasure to thank the referees of an earlier draft of this paper whose perceptive comments have resulted in many improvements. 1 Research supported in part by Record Treasu...
Derivative asset analysis in models with leveldependent and stochastic volatility
 CWI QUARTERLY
, 1996
"... In this survey we discuss models with leveldependent and stochastic volatility from the viewpoint of derivative asset analysis. Both classes of models are generalisations of the classical BlackScholes model; they have been developed in an effort to build models that are flexible enough to cope wit ..."
Abstract

Cited by 38 (1 self)
 Add to MetaCart
In this survey we discuss models with leveldependent and stochastic volatility from the viewpoint of derivative asset analysis. Both classes of models are generalisations of the classical BlackScholes model; they have been developed in an effort to build models that are flexible enough to cope with the known deficits of the classical BlackScholes model. We start by briefly recalling the standard theory for pricing and hedging derivatives in complete frictionless markets and the classical BlackScholes model. After a review of the known empirical contradictions to the classical BlackScholes model we consider models with leveldependent volatility. Most of this survey is devoted to derivative asset analysis in stochastic volatility models. We discuss several recent developments in the theory of derivative pricing under incompleteness in the context of stochastic volatility models and review analytical and numerical approaches to the actual computation of option values.
MeanReverting Stochastic Volatility
, 2000
"... We present derivative pricing and estimation tools for a class of stochastic volatility models that exploit the observed "bursty" or persistent nature of stock price volatility. An empirical analysis of highfrequency S&P 500 index data confirms that volatility reverts slowly to its mean in comparis ..."
Abstract

Cited by 22 (7 self)
 Add to MetaCart
We present derivative pricing and estimation tools for a class of stochastic volatility models that exploit the observed "bursty" or persistent nature of stock price volatility. An empirical analysis of highfrequency S&P 500 index data confirms that volatility reverts slowly to its mean in comparison to the tickbytick fluctuations of the index value, but it is fast meanreverting when looked at over the time scale of a derivative contract (many months). This motivates an asymptotic analysis of the partial differential equation satisfied by derivative prices, utilizing the distinction between these time scales. The analysis yields pricing and implied volatility formulas, and the latter is used to "fit the smile" from European index option prices. The theory identifies the important group parameters that are needed for the derivative pricing and hedging problem for Europeanstyle securities, namely the average volatility and the slope and intercept of the implied volatility line, plotted as a function of the logmoneynesstomaturityratio. The results considerably simplify the estimation procedure, and the data produces estimates
General BlackScholes models accounting for increased market volatility from hedging strategies
, 1997
"... Increases in market volatility of asset prices have been observed and analyzed in recent years and their cause has generally been attributed to the popularity of portfolio insurance strategies for derivative securities. The basis of derivative pricing is the BlackScholes model and its use is so ext ..."
Abstract

Cited by 19 (1 self)
 Add to MetaCart
Increases in market volatility of asset prices have been observed and analyzed in recent years and their cause has generally been attributed to the popularity of portfolio insurance strategies for derivative securities. The basis of derivative pricing is the BlackScholes model and its use is so extensive that it is likely to influence the market itself. In particular it has been suggested that this is a factor in the rise in volatilities. In this work we present a class of pricing models that account for the feedback effect from the BlackScholes dynamic hedging strategies on the price of the asset, and from there back onto the price of the derivative. These models do predict increased implied volatilities with minimal assumptions beyond those of the BlackScholes theory. They are characterized by a nonlinear partial differential equation that reduces to the BlackScholes equation when the feedback is removed. We begin with a model economy consisting of two distinct groups of traders: Reference traders who are the majority investing in the asset expecting gain, and program traders who trade the asset following a BlackScholes type dynamic hedging strategy, which is not known a priori, in order to insure against the risk of a derivative security. The interaction of these groups leads to a stochastic process for the price of the asset which depends on the hedging strategy of the program traders. Then following a BlackScholes argument, we
Stochastic Volatility, Smile & Asymptotics
, 1998
"... We consider the pricing and hedging problem for options on stocks whose volatility is a random process. Traditional approaches, such as that of Hull & White, have been successful in accounting for the much observed smile curve, and the success of a large class of such models in this respect is guara ..."
Abstract

Cited by 13 (9 self)
 Add to MetaCart
We consider the pricing and hedging problem for options on stocks whose volatility is a random process. Traditional approaches, such as that of Hull & White, have been successful in accounting for the much observed smile curve, and the success of a large class of such models in this respect is guaranteed by a theorem of Renault & Touzi, for which we present a simplified proof. We also present new asymptotic formulas that describe the geometry of smile curves and can be used for interpolation of implied volatility data. Motivated by the robustness of the smile effect to specific modelling of the unobserved volatility process, we present a new approach to stochastic volatility modelling starting with the BlackScholes pricing PDE with a random volatility coefficient. We identify and exploit distinct time scales of fluctuation for the stock price and volatility processes yielding an asymptotic approximation that is a BlackScholes type price or hedging ratio plus a Gaussian random variable quantifying the risk from the uncertainty in the volatility. These lead us to translate volatility risk into pricing and hedging bands for the derivative securities, without needing to estimate the market's value of risk. For some special cases, we can give explicit formulas. We outline
Credit spreads, optimal capital structure, and implied volatility with endogenous default and jump risk
, 2005
"... We propose a twosided jump model for credit risk by extending the LelandToft endogenous default model based on the geometric Brownian motion. The model shows that jump risk and endogenous default can have significant impacts on credit spreads, optimal capital structure, and implied volatility of e ..."
Abstract

Cited by 13 (0 self)
 Add to MetaCart
We propose a twosided jump model for credit risk by extending the LelandToft endogenous default model based on the geometric Brownian motion. The model shows that jump risk and endogenous default can have significant impacts on credit spreads, optimal capital structure, and implied volatility of equity options: (1) The jump and endogenous default can produce a variety of nonzero credit spreads, including upward, humped, and downward shapes; interesting enough, the model can even produce, consistent with empirical findings, upward credit spreads for speculative grade bonds. (2) The jump risk leads to much lower optimal debt/equity ratio; in fact, with jump risk, highly risky firms tend to have very little debt. (3) The twosided jumps lead to a variety of shapes for the implied volatility of equity options, even for long maturity options; and although in generel credit spreads and implied volatility tend to move in the same direction under exogenous default models, but this may not be true in presence of endogenous default and jumps. In terms of mathematical contribution, we give a proof of a version of the “smooth fitting ” principle for the jump model, justifying a conjecture first suggested by Leland and Toft under the Brownian model. 1
The Econometrics of Option Pricing
"... The growth of the option pricing literature parallels the spectacular developments of derivative securities and the rapid expansion of markets for derivatives in the last three decades. Writing a survey of option pricing models appears therefore like a formidable task. To delimit our focus we will ..."
Abstract

Cited by 12 (1 self)
 Add to MetaCart
The growth of the option pricing literature parallels the spectacular developments of derivative securities and the rapid expansion of markets for derivatives in the last three decades. Writing a survey of option pricing models appears therefore like a formidable task. To delimit our focus we will put emphasis on the more recent contributions since there are