Results 1 
4 of
4
Synchronization of Logics
 Studia Logica
, 1996
"... Motivated by applications in software engineering, we propose two forms of combination of logics: synchronization on formulae and synchronization on models. We start by reviewing satisfaction systems, consequence systems, onestep derivation systems and theory spaces, as well as their functorial ..."
Abstract

Cited by 12 (9 self)
 Add to MetaCart
Motivated by applications in software engineering, we propose two forms of combination of logics: synchronization on formulae and synchronization on models. We start by reviewing satisfaction systems, consequence systems, onestep derivation systems and theory spaces, as well as their functorial relationships. We define the synchronization on formulae of two consequence systems and provide a categorial characterization of the construction. For illustration we consider the synchronization of linear temporal logic and equational logic. We define the synchronization on models of two satisfaction systems and provide a categorial characterization of the construction. We illustrate the technique in two cases: linear temporal logic versus equational logic; and linear temporal logic versus branching temporal logic. Finally, we lift the synchronization on formulae to the category of logics over consequence systems. Key words: combination of logics, synchronization on formulae, sync...
Verifying probabilistic system with EpCTL
"... A temporal logic for reasoning about probabilistic systems is considered exogenous probabilistic computation tree logic (EpCTL). Both a syntactic and a semantic approach to verify systems with EpCTL are introduced. For the first approach a (weakly) complete Hilbert calculus is given. The completene ..."
Abstract

Cited by 2 (1 self)
 Add to MetaCart
A temporal logic for reasoning about probabilistic systems is considered exogenous probabilistic computation tree logic (EpCTL). Both a syntactic and a semantic approach to verify systems with EpCTL are introduced. For the first approach a (weakly) complete Hilbert calculus is given. The completeness result capitalizes in the decidability of the existential theory of the real numbers and in a PSPACE SAT algorithm for the state logic. For the model checking approach, the semantics is simplified to (probabilistic) Kripke structures where probability distributions are modeled with floating point arrays. In this case, the modelchecking algorithm turns up to be polynomial in the size of the model. The results are illustrated with a simple asynchronous probabilistic programming language where some examples are specified and analyzed. 1
Orientador: Vogal:
"... Neste trabalho, apresentamos a implementação de uma ferramenta de verificação de modelos eficiente para fórmulas de uma lógica probabilística formal (EPPL) sobre circuitos digitais não fiáveis. Para aumentar a eficiência, capitalizamos em várias propriedades específicas destas estruturas; ainda assi ..."
Abstract
 Add to MetaCart
Neste trabalho, apresentamos a implementação de uma ferramenta de verificação de modelos eficiente para fórmulas de uma lógica probabilística formal (EPPL) sobre circuitos digitais não fiáveis. Para aumentar a eficiência, capitalizamos em várias propriedades específicas destas estruturas; ainda assim, o programa mantémse muito flexível, permitindo fácil adaptação a outros modelos mais complexos. Também é introduzido um método para minimizar problemas de espaço em verificadores de modelos sobre um subconjunto de sistemas probabilísticos representáveis por redes Bayesianas. Para tal, consideramos factorizações dos processos estocásticos associados aos espaços de probabilidades gerados pelos sistemas. São discutidas implicações de considerar uma extensão temporal sobre a lógica; é proposto um algoritmo de verificação para o caso temporal e são apresentadas opções de implementação. Palavraschave: Sistemas probabilísticos, verificação de modelos, circuitos digitais, lógica temporal, lógica probabilística. In this work, we present the implementation of an efficient model checking tool for formulas of a formal probabilistic logic (EPPL) over nonreliable digital circuits. In order to increase efficiency, we capitalize on several specific properties of these structures; however, the tool remains very open ended, allowing for adaptation to other, more complex, models. A method to minimize space problems on model checkers over a subset of probabilistic systems representable by Bayesian networks, is also introduced. For this, we consider factorizations of stochastic processes associated with the probability spaces generated by the systems. Implications of considering a temporal extension to the logic are discussed, a model checking procedure is proposed for the temporal case and implementation options are presented.