Results 21  30
of
8,760
A Graduated Assignment Algorithm for Graph Matching
, 1996
"... A graduated assignment algorithm for graph matching is presented which is fast and accurate even in the presence of high noise. By combining graduated nonconvexity, twoway (assignment) constraints, and sparsity, large improvements in accuracy and speed are achieved. Its low order computational comp ..."
Abstract

Cited by 285 (15 self)
 Add to MetaCart
A graduated assignment algorithm for graph matching is presented which is fast and accurate even in the presence of high noise. By combining graduated nonconvexity, twoway (assignment) constraints, and sparsity, large improvements in accuracy and speed are achieved. Its low order computational complexity [O(lm), where l and m are the number of links in the two graphs] and robustness in the presence of noise offer advantages over traditional combinatorial approaches. The algorithm, not restricted to any special class of graph, is applied to subgraph isomorphism, weighted graph matching, and attributed relational graph matching. To illustrate the performance of the algorithm, attributed relational graphs derived from objects are matched. Then, results from twentyfive thousand experiments conducted on 100 node random graphs of varying types (graphs with only zeroone links, weighted graphs, and graphs with node attributes and multiple link types) are reported. No comparable results have...
Multiobjective Evolutionary Algorithms: Analyzing the StateoftheArt
, 2000
"... Solving optimization problems with multiple (often conflicting) objectives is, generally, a very difficult goal. Evolutionary algorithms (EAs) were initially extended and applied during the mideighties in an attempt to stochastically solve problems of this generic class. During the past decade, ..."
Abstract

Cited by 285 (7 self)
 Add to MetaCart
Solving optimization problems with multiple (often conflicting) objectives is, generally, a very difficult goal. Evolutionary algorithms (EAs) were initially extended and applied during the mideighties in an attempt to stochastically solve problems of this generic class. During the past decade, a variety of multiobjective EA (MOEA) techniques have been proposed and applied to many scientific and engineering applications. Our discussion's intent is to rigorously define multiobjective optimization problems and certain related concepts, present an MOEA classification scheme, and evaluate the variety of contemporary MOEAs. Current MOEA theoretical developments are evaluated; specific topics addressed include fitness functions, Pareto ranking, niching, fitness sharing, mating restriction, and secondary populations. Since the development and application of MOEAs is a dynamic and rapidly growing activity, we focus on key analytical insights based upon critical MOEA evaluation of c...
Optimally Profiling and Tracing Programs
 ACM Transactions on Programming Languages and Systems
, 1994
"... copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others ..."
Abstract

Cited by 279 (19 self)
 Add to MetaCart
copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications
Security Arguments for Digital Signatures and Blind Signatures
 JOURNAL OF CRYPTOLOGY
, 2000
"... Since the appearance of publickey cryptography in the seminal DiffieHellman paper, many new schemes have been proposed and many have been broken. Thus, the ..."
Abstract

Cited by 278 (35 self)
 Add to MetaCart
Since the appearance of publickey cryptography in the seminal DiffieHellman paper, many new schemes have been proposed and many have been broken. Thus, the
Bucket Elimination: A Unifying Framework for Reasoning
"... Bucket elimination is an algorithmic framework that generalizes dynamic programming to accommodate many problemsolving and reasoning tasks. Algorithms such as directionalresolution for propositional satisfiability, adaptiveconsistency for constraint satisfaction, Fourier and Gaussian elimination ..."
Abstract

Cited by 278 (62 self)
 Add to MetaCart
Bucket elimination is an algorithmic framework that generalizes dynamic programming to accommodate many problemsolving and reasoning tasks. Algorithms such as directionalresolution for propositional satisfiability, adaptiveconsistency for constraint satisfaction, Fourier and Gaussian elimination for solving linear equalities and inequalities, and dynamic programming for combinatorial optimization, can all be accommodated within the bucket elimination framework. Many probabilistic inference tasks can likewise be expressed as bucketelimination algorithms. These include: belief updating, finding the most probable explanation, and expected utility maximization. These algorithms share the same performance guarantees; all are time and space exponential in the inducedwidth of the problem's interaction graph. While elimination strategies have extensive demands on memory, a contrasting class of algorithms called "conditioning search" require only linear space. Algorithms in this class split a problem into subproblems by instantiating a subset of variables, called a conditioning set, or a cutset. Typical examples of conditioning search algorithms are: backtracking (in constraint satisfaction), and branch and bound (for combinatorial optimization). The paper presents the bucketelimination framework as a unifying theme across probabilistic and deterministic reasoning tasks and show how conditioning search can be augmented to systematically trade space for time.
Approximation Algorithms for Connected Dominating Sets
 Algorithmica
, 1996
"... The dominating set problem in graphs asks for a minimum size subset of vertices with the following property: each vertex is required to either be in the dominating set, or adjacent to some node in the dominating set. We focus on the question of finding a connected dominating set of minimum size, whe ..."
Abstract

Cited by 277 (9 self)
 Add to MetaCart
The dominating set problem in graphs asks for a minimum size subset of vertices with the following property: each vertex is required to either be in the dominating set, or adjacent to some node in the dominating set. We focus on the question of finding a connected dominating set of minimum size, where the graph induced by vertices in the dominating set is required to be connected as well. This problem arises in network testing, as well as in wireless communication. Two polynomial time algorithms that achieve approximation factors of O(H (\Delta)) are presented, where \Delta is the maximum degree, and H is the harmonic function. This question also arises in relation to the traveling tourist problem, where one is looking for the shortest tour such that each vertex is either visited, or has at least one of its neighbors visited. We study a generalization of the problem when the vertices have weights, and give an algorithm which achieves a performance ratio of 3 ln n. We also consider the ...
Methods for Task Allocation Via Agent Coalition Formation
, 1998
"... Task execution in multiagent environments may require cooperation among agents. Given a set of agents and a set of tasks which they have to satisfy, we consider situations where each task should be attached to a group of agents that will perform the task. Task allocation to groups of agents is nece ..."
Abstract

Cited by 271 (21 self)
 Add to MetaCart
Task execution in multiagent environments may require cooperation among agents. Given a set of agents and a set of tasks which they have to satisfy, we consider situations where each task should be attached to a group of agents that will perform the task. Task allocation to groups of agents is necessary when tasks cannot be performed by a single agent. However it may also be beneficial when groups perform more efficiently with respect to the single agents' performance. In this paper we present several solutions to the problem of task allocation among autonomous agents, and suggest that the agents form coalitions in order to perform tasks or improve the efficiency of their performance. We present efficient distributed algorithms with low ratio bounds and with low computational complexities. These properties are proven theoretically and supported by simulations and an implementation in an agent system. Our methods are based on both the algorithmic aspects of combinatorics and approximat...
Channel Assignment Schemes for Cellular Mobile Telecommunication Systems
 IEEE Personal Communications
, 1996
"... This paper provides a detailed discussion of wireless resource and channel allocation schemes. We provide a survey of a large number of published papers in the area of fixed, dynamic and hybrid allocation schemes and compare their tradeoffs in terms of complexity and performance. We also investigat ..."
Abstract

Cited by 267 (1 self)
 Add to MetaCart
This paper provides a detailed discussion of wireless resource and channel allocation schemes. We provide a survey of a large number of published papers in the area of fixed, dynamic and hybrid allocation schemes and compare their tradeoffs in terms of complexity and performance. We also investigate these channel allocation schemes based on other factors such as distributed/centralized control and adaptability to traffic conditions. Moreover, we provide a detailed discussion on reuse partitioning schemes, effect of handoffs and prioritization schemes. Finally, we discuss other important issues in resource allocation such as overlay cells, frequency planning, and power control. 1 Introduction Technological advances and rapid development of handheld wireless terminals have facilitated the rapid growth of wireless communications and mobile computing. Taking ergonomics and economics factors into account, and considering the new trends in the telecommunications industry to provide ubiqui...
On Clusterings: Good, Bad and Spectral
, 2000
"... We motivate and develop a natural bicriteria measure for assessing the quality of a clustering which avoids the drawbacks of existing measures. A simple recursive heuristic has polylogarithmic worstcase guarantees under the new measure. The main result of the paper is the analysis of a popular spe ..."
Abstract

Cited by 254 (12 self)
 Add to MetaCart
We motivate and develop a natural bicriteria measure for assessing the quality of a clustering which avoids the drawbacks of existing measures. A simple recursive heuristic has polylogarithmic worstcase guarantees under the new measure. The main result of the paper is the analysis of a popular spectral algorithm. One variant of spectral clustering turns out to have effective worstcase guarantees
Stable models and an alternative logic programming paradigm
 In The Logic Programming Paradigm: a 25Year Perspective
, 1999
"... In this paper we reexamine the place and role of stable model semantics in logic programming and contrast it with a least Herbrand model approach to Horn programs. We demonstrate that inherent features of stable model semantics naturally lead to a logic programming system that offers an interesting ..."
Abstract

Cited by 250 (18 self)
 Add to MetaCart
In this paper we reexamine the place and role of stable model semantics in logic programming and contrast it with a least Herbrand model approach to Horn programs. We demonstrate that inherent features of stable model semantics naturally lead to a logic programming system that offers an interesting alternative to more traditional logic programming styles of Horn logic programming, stratified logic programming and logic programming with wellfounded semantics. The proposed approach is based on the interpretation of program clauses as constraints. In this setting programs do not describe a single intended model, but a family of stable models. These stable models encode solutions to the constraint satisfaction problem described by the program. Our approach imposes restrictions on the syntax of logic programs. In particular, function symbols are eliminated from the language. We argue that the resulting logic programming system is wellattuned to problems in the class NP, has a welldefined domain of applications, and an emerging methodology of programming. We point out that what makes the whole approach viable is recent progress in implementations of algorithms to compute stable models of propositional logic programs. 1