Results 1 
1 of
1
Complete Axioms for Categorical Fixedpoint Operators
 In Proceedings of 15th Annual Symposium on Logic in Computer Science
, 2000
"... We give an axiomatic treatment of fixedpoint operators in categories. A notion of iteration operator is defined, embodying the equational properties of iteration theories. We prove a general completeness theorem for iteration operators, relying on a new, purely syntactic characterisation of the fre ..."
Abstract

Cited by 31 (6 self)
 Add to MetaCart
(Show Context)
We give an axiomatic treatment of fixedpoint operators in categories. A notion of iteration operator is defined, embodying the equational properties of iteration theories. We prove a general completeness theorem for iteration operators, relying on a new, purely syntactic characterisation of the free iteration theory. We then show how iteration operators arise in axiomatic domain theory. One result derives them from the existence of sufficiently many bifree algebras (exploiting the universal property Freyd introduced in his notion of algebraic compactness) . Another result shows that, in the presence of a parameterized natural numbers object and an equational lifting monad, any uniform fixedpoint operator is necessarily an iteration operator. 1. Introduction Fixed points play a central role in domain theory. Traditionally, one works with a category such as Cppo, the category of !continuous functions between !complete pointed partial orders. This possesses a leastfixedpoint oper...