Results 1 
2 of
2
Generic Models for Computational Effects
"... A Freydcategory is a subtle generalisation of the notion of a category with finite products. It is suitable for modelling environments in callbyvalue programming languages, such as the computational λcalculus, with computational effects. We develop the theory of Freydcategories with that in min ..."
Abstract

Cited by 5 (1 self)
 Add to MetaCart
A Freydcategory is a subtle generalisation of the notion of a category with finite products. It is suitable for modelling environments in callbyvalue programming languages, such as the computational λcalculus, with computational effects. We develop the theory of Freydcategories with that in mind. We first show that any countable Lawvere theory, hence any signature of operations with countable arity subject to equations, directly generates a Freydcategory. We then give canonical, universal embeddings of Freydcategories into closed Freydcategories, characterised by being free cocompletions. The combination of the two constructions sends a signature of operations and equations to the Kleisli category for the monad on the category Set generated by it, thus refining the analysis of computational effects given by monads. That in turn allows a more structural analysis of the λccalculus. Our leading examples of signatures arise from sideeffects, interactive input/output and exceptions. We extend our analysis to an enriched setting in order to account for recursion and for computational effects and signatures that inherently involve it, such as partiality, nondeterminism and probabilistic nondeterminism. Key words: Freydcategory, enriched Yoneda embedding, conical colimit completion, canonical model
Some Varieties of Equational Logic (Extended Abstract), Algebra
 Meaning, and Computation, Essays Dedicated to Joseph A. Goguen on the Occasion of His 65th Birthday
, 2006
"... been a major theme of Joseph Goguen’s research, perhaps even the major theme. One strand of this work concerns algebraic datatypes. Recently there has been some interest in what one may call algebraic computation types. As we will show, these are also given by equational theories, if one only unders ..."
Abstract

Cited by 2 (1 self)
 Add to MetaCart
been a major theme of Joseph Goguen’s research, perhaps even the major theme. One strand of this work concerns algebraic datatypes. Recently there has been some interest in what one may call algebraic computation types. As we will show, these are also given by equational theories, if one only understands the notion of equational logic in somewhat broader senses than usual. One moral of our work is that, suitably considered, equational logic is not tied to the usual firstorder syntax of terms and equations. Standard equational logic has proved a useful tool in several branches of computer science, see, for example, the RTA conference series [9] and textbooks, such as [1]. Perhaps the possibilities for richer varieties of equational logic discussed here will lead to further applications. We begin with an explanation of computation types. Starting around 1989, Eugenio Moggi introduced the idea of monadic notions of computation [11, 12]