Results 1 
2 of
2
Asymptotic distributions for the cost of linear probing hashing
 RANDOM STRUCTURES AND ALGORITHMS
, 2001
"... We study moments and asymptotic distributions of the construction cost, measured as the total displacement, for hash tables using linear probing. Four different methods are employed for different ranges of the parameters; together they yield a complete description. This extends earlier results by F ..."
Abstract

Cited by 14 (5 self)
 Add to MetaCart
We study moments and asymptotic distributions of the construction cost, measured as the total displacement, for hash tables using linear probing. Four different methods are employed for different ranges of the parameters; together they yield a complete description. This extends earlier results by Flajolet, Poblete and Viola. The average cost of unsuccessful searches is considered too.
Individual displacements for linear probing hashing with different insertion policies
 ACM Transactions on Algorithms
, 2005
"... Abstract. We study the distribution of the individual displacements in hashing with linear probing for three different versions: First Come, Last Come and Robin Hood. Asymptotic distributions and their moments are found when the the size of the hash table tends to infinity with the proportion of occ ..."
Abstract

Cited by 7 (2 self)
 Add to MetaCart
(Show Context)
Abstract. We study the distribution of the individual displacements in hashing with linear probing for three different versions: First Come, Last Come and Robin Hood. Asymptotic distributions and their moments are found when the the size of the hash table tends to infinity with the proportion of occupied cells converging to some α, 0 < α < 1. (In the case of Last Come, the results are more complicated and less complete than in the other cases.) We also show, using the diagonal Poisson transform studied by Poblete, Viola and Munro, that exact expressions for finite m and n can be obtained from the limits as m, n → ∞. We end with some results, conjectures and questions about the shape of the limit distributions. These have some relevance for computer applications. 1.