Results 1  10
of
50
Image Parsing: Unifying Segmentation, Detection, and Recognition
, 2005
"... In this paper we present a Bayesian framework for parsing images into their constituent visual patterns. The parsing algorithm optimizes the posterior probability and outputs a scene representation in a "parsing graph", in a spirit similar to parsing sentences in speech and natural language. The ..."
Abstract

Cited by 160 (18 self)
 Add to MetaCart
In this paper we present a Bayesian framework for parsing images into their constituent visual patterns. The parsing algorithm optimizes the posterior probability and outputs a scene representation in a "parsing graph", in a spirit similar to parsing sentences in speech and natural language. The algorithm constructs the parsing graph and reconfigures it dynamically using a set of reversible Markov chain jumps. This computational framework integrates two popular inference approaches  generative (topdown) methods and discriminative (bottomup) methods. The former formulates the posterior probability in terms of generative models for images defined by likelihood functions and priors. The latter computes discriminative probabilities based on a sequence (cascade) of bottomup tests/filters.
Modeling the manifolds of images of handwritten digits
 IEEE Transactions on Neural Networks
, 1997
"... description length, density estimation. ..."
MachineLearning Research  Four Current Directions
"... Machine Learning research has been making great progress in many directions. This article summarizes four of these directions and discusses some current open problems. The four directions are (a) improving classification accuracy by learning ensembles of classifiers, (b) methods for scaling up super ..."
Abstract

Cited by 114 (1 self)
 Add to MetaCart
Machine Learning research has been making great progress in many directions. This article summarizes four of these directions and discusses some current open problems. The four directions are (a) improving classification accuracy by learning ensembles of classifiers, (b) methods for scaling up supervised learning algorithms, (c) reinforcement learning, and (d) learning complex stochastic models.
Learning from one example through shared densities on transforms
 In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, 2000
"... We define a process called congealing in which elements of a dataset (images) are brought into correspondence with each other jointly, producing a datadefined model. It is based upon minimizing the summed componentwise (pixelwise) entropies over a continuous set of transforms on the data. One of t ..."
Abstract

Cited by 90 (7 self)
 Add to MetaCart
We define a process called congealing in which elements of a dataset (images) are brought into correspondence with each other jointly, producing a datadefined model. It is based upon minimizing the summed componentwise (pixelwise) entropies over a continuous set of transforms on the data. One of the biproducts of this minimization is a set of transforms, one associated with each original training sample. We then demonstrate a procedure for effectively bringing test data into correspondence with the datadefined model produced in the congealing process. Subsequently, we develop a probability density over the set of transforms that arose from the congealing process. We suggest that this density over transforms may be shared by many classes, and demonstrate how using this density as “prior knowledge ” can be used to develop a classifier based on only a single training example for each class. 1
Detecting and reading text in natural scenes
 In Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition
, 2004
"... This paper gives an algorithm for detecting and reading text in natural images. The algorithm is intended for use by blind and visually impaired subjects walking through city scenes. We first obtain a dataset of city images taken by blind and normally sighted subjects. From this dataset, we manually ..."
Abstract

Cited by 80 (2 self)
 Add to MetaCart
This paper gives an algorithm for detecting and reading text in natural images. The algorithm is intended for use by blind and visually impaired subjects walking through city scenes. We first obtain a dataset of city images taken by blind and normally sighted subjects. From this dataset, we manually label and extract the text regions. Next we perform statistical analysis of the text regions to determine which image features are reliable indicators of text and have low entropy (i.e. feature response is similar for all text images). We obtain weak classifiers by using joint probabilities for feature responses on and off text. These weak classifiers are used as input to an AdaBoost machine learning algorithm to train a strong classifier. In practice, we trained a cascade with 4 strong classifiers containg 79 features. An adaptive binarization and extension algorithm is applied to those regions selected by the cascade classifier. A commercial OCR software is used to read the text or reject it as a nontext region. The overall algorithm has a success rate of over 90% (evaluated by complete detection and reading of the text) on the test set and the unread text is typically small and distant from the viewer. 1.
Data driven image models through continuous joint alignment
 PAMI
, 2006
"... This paper presents a family of techniques that we call congealing for modeling image classes from data. The idea is to start with a set of images and make them appear as similar as possible by removing variability along the known axes of variation. This technique can be used to eliminate “nuisance ..."
Abstract

Cited by 57 (4 self)
 Add to MetaCart
This paper presents a family of techniques that we call congealing for modeling image classes from data. The idea is to start with a set of images and make them appear as similar as possible by removing variability along the known axes of variation. This technique can be used to eliminate “nuisance” variables such as affine deformations from handwritten digits or unwanted bias fields from magnetic resonance images. In addition to separating and modeling the latent images—i.e., the images without the nuisance variables—we can model the nuisance variables themselves, leading to factorized generative image models. When nuisance variable distributions are shared between classes, one can share the knowledge learned in one task with another task, leading to efficient learning. We demonstrate this process by building a handwritten digit classifier from just a single example of each class. In addition to applications in handwritten character recognition, we describe in detail the application of bias removal from magnetic resonance images. Unlike previous methods, we use a separate, nonparametric model for the intensity values at each pixel. This allows us to leverage the data from the MR images of different patients to remove bias from each other. Only very weak assumptions are made about the distributions of intensity values in the images. In addition to the digit and MR applications, we discuss a number of other uses of congealing and describe experiments about the robustness and consistency of the method.
Representation and recognition of handwritten digits using deformable templates
 IEEE Transactions on Pattern Analysis and Machine Intelligence
, 1997
"... Abstract—We investigate the application of deformable templates to recognition of handprinted digits. Two characters are matched by deforming the contour of one to fit the edge strengths of the other, and a dissimilarity measure is derived from the amount of deformation needed, the goodness of fit o ..."
Abstract

Cited by 55 (2 self)
 Add to MetaCart
Abstract—We investigate the application of deformable templates to recognition of handprinted digits. Two characters are matched by deforming the contour of one to fit the edge strengths of the other, and a dissimilarity measure is derived from the amount of deformation needed, the goodness of fit of the edges, and the interior overlap between the deformed shapes. Classification using the minimum dissimilarity results in recognition rates up to 99.25 percent on a 2,000 character subset of NIST Special Database 1. Additional experiments on an independent test data were done to demonstrate the robustness of this method. Multidimensional scaling is also applied to the 2,000 – 2,000 proximity matrix, using the dissimilarity measure as a distance, to embed the patterns as points in lowdimensional spaces. A nearest neighbor classifier is applied to the resulting pattern matrices. The classification accuracies obtained in the derived feature space demonstrate that there does exist a good lowdimensional representation space. Methods to reduce the computational requirements, the primary limiting factor of this method, are discussed. Index Terms—Digit recognition, deformable template, feature extraction, multidimensional scaling, clustering, nearest neighbor classification. 1
Nonrigid point set registration: Coherent Point Drift (CPD)
 IN ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 19
, 2006
"... We introduce Coherent Point Drift (CPD), a novel probabilistic method for nonrigid registration of point sets. The registration is treated as a Maximum Likelihood (ML) estimation problem with motion coherence constraint over the velocity field such that one point set moves coherently to align with ..."
Abstract

Cited by 48 (0 self)
 Add to MetaCart
We introduce Coherent Point Drift (CPD), a novel probabilistic method for nonrigid registration of point sets. The registration is treated as a Maximum Likelihood (ML) estimation problem with motion coherence constraint over the velocity field such that one point set moves coherently to align with the second set. We formulate the motion coherence constraint and derive a solution of regularized ML estimation through the variational approach, which leads to an elegant kernel form. We also derive the EM algorithm for the penalized ML optimization with deterministic annealing. The CPD method simultaneously finds both the nonrigid transformation and the correspondence between two point sets without making any prior assumption of the transformation model except that of motion coherence. This method can estimate complex nonlinear nonrigid transformations, and is shown to be accurate on 2D and 3D examples and robust in the presence of outliers and missing points.
Pop: Patchwork of parts models for object recognition
 International Journal of Computer Vision
, 2004
"... We formulate a deformable template model for objects with a clearly defined mechanism for parameter estimation. A separate model is estimated for each class, and classification is likelihood based no discrmination boundaries are learned. Nonetheless high classification rates are achieved with smal ..."
Abstract

Cited by 38 (3 self)
 Add to MetaCart
We formulate a deformable template model for objects with a clearly defined mechanism for parameter estimation. A separate model is estimated for each class, and classification is likelihood based no discrmination boundaries are learned. Nonetheless high classification rates are achieved with small training samples. The data models are defined on binary oriented edge features that are highly robust to photometric variation and small local deformations. The deformation of an object is defined in terms of locations of a moderate number reference points. Each reference point is associated with a part a probability map assigning a probability for each edge type at each pixel in a window. The likelihood of the edge data on the entire image conditional on the deformation is described as a patchwork of parts (POP) model the edges are assumed conditionally independent, and the marginal at each pixel is obtained by a patchwork operation: averaging the marginal probabilities contributed by each part covering the pixel. Object classes are modeled as mixtures of POP models that are discovered sequentially as more class data is observed. Experiments are presented on the MNIST database, hundreds of deformed LATEX shapes, reading zipcodes, and face detection. 1
An Adaptive Eigenshape Model
"... There has been a great deal of recent interest in statistical models of 2D landmark data for generating compact deformable models of a given object. This paper extends this work to a class of parametrised shapes where there are no landmarks available. A rigorous statistical framework for the eigensh ..."
Abstract

Cited by 31 (0 self)
 Add to MetaCart
There has been a great deal of recent interest in statistical models of 2D landmark data for generating compact deformable models of a given object. This paper extends this work to a class of parametrised shapes where there are no landmarks available. A rigorous statistical framework for the eigenshape model is introduced, which is an extension to the conventional Linear Point Distribution Model. One of the problems associated with landmark free methods is that a large degree of variability in any shape descriptor may be due to the choice of parametrisation. An automated training method is described which utilises an iterative feedback method to overcome this problem. The result is an automatically generated compact linear shape model. The model has been successfully applied to a problem of tracking the outline of a walking pedestrian in real time.