Results 1 
6 of
6
Discrete Logarithms in Finite Fields and Their Cryptographic Significance
, 1984
"... Given a primitive element g of a finite field GF(q), the discrete logarithm of a nonzero element u GF(q) is that integer k, 1 k q  1, for which u = g k . The wellknown problem of computing discrete logarithms in finite fields has acquired additional importance in recent years due to its appl ..."
Abstract

Cited by 87 (6 self)
 Add to MetaCart
Given a primitive element g of a finite field GF(q), the discrete logarithm of a nonzero element u GF(q) is that integer k, 1 k q  1, for which u = g k . The wellknown problem of computing discrete logarithms in finite fields has acquired additional importance in recent years due to its applicability in cryptography. Several cryptographic systems would become insecure if an efficient discrete logarithm algorithm were discovered. This paper surveys and analyzes known algorithms in this area, with special attention devoted to algorithms for the fields GF(2 n ). It appears that in order to be safe from attacks using these algorithms, the value of n for which GF(2 n ) is used in a cryptosystem has to be very large and carefully chosen. Due in large part to recent discoveries, discrete logarithms in fields GF(2 n ) are much easier to compute than in fields GF(p) with p prime. Hence the fields GF(2 n ) ought to be avoided in all cryptographic applications. On the other hand, ...
Factorization beyond the googol with MPQS on a single computer
 CWI Quarterly
, 1991
"... For the first time a number of more than 100 decimal digits has been factorized on a single computer by means of the Multiple Polynomial Quadratic Sieve method of Kraïtchik and Pomerance (with improvements by Montgomery and Silverman). This method (MPQS) is the best one known to handle numbers which ..."
Abstract

Cited by 2 (2 self)
 Add to MetaCart
For the first time a number of more than 100 decimal digits has been factorized on a single computer by means of the Multiple Polynomial Quadratic Sieve method of Kraïtchik and Pomerance (with improvements by Montgomery and Silverman). This method (MPQS) is the best one known to handle numbers which are the product of two large, approximately equal prime factors. These numbers are being used in cryptography as keys in publickey cryptosystems. The safety of such cryptosystems depends on our ability to factorize these keys. The computer used is the fourprocessor Cray YMP4/464 which was installed
Computational Number Theory at CWI in 19701994
, 1994
"... this paper we present a concise survey of the research in Computational ..."
unknown title
"... The literature of cryptography has a curious history. Secrecy, of course, has always played a central role, but until the First World War, important developments appeared in print in a more or less timely fashion and the field moved forward in much the same way as other specialized disciplines. As l ..."
Abstract
 Add to MetaCart
The literature of cryptography has a curious history. Secrecy, of course, has always played a central role, but until the First World War, important developments appeared in print in a more or less timely fashion and the field moved forward in much the same way as other specialized disciplines. As late as 1918, one of the most influential cryptanalytic papers of the twentieth century, William F. Friedman’s monograph The Index of Coincidence and Its Applications in Cryptography, appeared as a research report of the private Riverbank Laboratories [577]. And this, despite the fact that the work had been done as part of the war effort. In the same year Edward H. Hebern of Oakland, California filed the first patent for a rotor machine [710], the device destined to be a mainstay of military cryptography for nearly 50 years. After the First World War, however, things began to change. U.S. Army and Navy organizations, working entirely in secret, began to make fundamental advances in cryptography. During the thirties and forties a few basic papers did appear in the open literature and several treatises on the subject were published, but the latter were farther and farther behind the state of the art. By the end of the war the transition was complete. With one notable exception, the public literature had died. That exception was Claude Shannon’s paper “The Communication Theory of Secrecy Systems, ” which