Results 1 
6 of
6
A Defence of Informational Structural Realism
"... Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, ..."
Abstract

Cited by 18 (3 self)
 Add to MetaCart
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. It is a publisher's requirement to display the following notice: The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a noncommercial basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, notwithstanding that they have offered their works here electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted without the explicit permission of the copyright holder. In the case of Springer, it is the publisher’s requirement that the following note be added: “An author may selfarchive an authorcreated version of his/her article on his/her own website and his/her institution’s repository, including his/her final version; however he/she may not use the publisher’s PDF version which is posted on www.springerlink.com. Furthermore, the author may only post his/her version provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer’s website. The link must be accompanied by the following text: “The original publication is available at www.springerlink.com.”
particles and structural realism
"... Even if we are able to decide on a canonical formulation of our theory, there is the further problem of metaphysical underdetermination with respect to, for example, whether the entities postulated by a theory are individuals or not... We need to recognise the failure of our best theories to determi ..."
Abstract

Cited by 4 (0 self)
 Add to MetaCart
Even if we are able to decide on a canonical formulation of our theory, there is the further problem of metaphysical underdetermination with respect to, for example, whether the entities postulated by a theory are individuals or not... We need to recognise the failure of our best theories to determine even the most fundamental ontological characteristic of the purported entities they feature... What is required is a shift to a different ontological basis altogether, one for which questions of individuality simply do not arise. Perhaps we should view the individuals and nonindividuals packages, like particle and field pictures, as different representations of the same structure. There is an analogy here with the debate about substantivalism in general relativity. (Ladyman, 1998) In his paper “What is Structural Realism? ” (1998) James Ladyman drew a distinction between epistemological structural realism (ESR) and metaphysical (or ontic) structural realism (OSR). In recent years this distinction has set much of the agenda for philosophers of science interested in scientific realism. It has also led to the emergence of a related discussion in the philosophy of physics that concerns the alleged difficulties of interpreting general relativity that revolve around the question of the ontological status of spacetime points. Ladyman drew a suggestive analogy between the perennial debate between substantivalist and relationalist interpretations of spacetime on the one hand, and the debate about whether quantum mechanics treats identical particles as individuals or as ‘nonindividuals ’ on the other. In both cases, Ladyman’s suggestion is that a structural realist interpretation of the physics—in particular, an ontic structural realism—might
Philos Stud DOI 10.1007/s1109801301604 Mathematical representation: playing a role
"... Abstract The primary justification for mathematical structuralism is its capacity to explain two observations about mathematical objects, typically natural numbers. Noneliminative structuralism attributes these features to the particular ontology of mathematics. I argue that attributing the feature ..."
Abstract
 Add to MetaCart
Abstract The primary justification for mathematical structuralism is its capacity to explain two observations about mathematical objects, typically natural numbers. Noneliminative structuralism attributes these features to the particular ontology of mathematics. I argue that attributing the features to an ontology of structural objects conflicts with claims often made by structuralists to the effect that their structuralist theses are versions of Quine’s ontological relativity or Putnam’s internal realism. I describe and argue for an alternative explanation for these features which instead explains the attributes them to the mathematical practice of representing numbers using more concrete tokens, such as sets, strokes and so on.
ARISTOTELIAN REALISM
"... Aristotelian, or nonPlatonist, realism holds that mathematics is a science of the real world, just as much as biology or sociology are. Where biology studies living things and sociology studies human social relations, mathematics studies the quantitative or structural aspects of things, such as rat ..."
Abstract
 Add to MetaCart
Aristotelian, or nonPlatonist, realism holds that mathematics is a science of the real world, just as much as biology or sociology are. Where biology studies living things and sociology studies human social relations, mathematics studies the quantitative or structural aspects of things, such as ratios, or patterns, or complexity,
Mathematical representation: playing a role
 PHILOS STUD
, 2013
"... The primary justification for mathematical structuralism is its capacity to explain two observations about mathematical objects, typically natural numbers. Noneliminative structuralism attributes these features to the particular ontology of mathematics. I argue that attributing the features to an ..."
Abstract
 Add to MetaCart
The primary justification for mathematical structuralism is its capacity to explain two observations about mathematical objects, typically natural numbers. Noneliminative structuralism attributes these features to the particular ontology of mathematics. I argue that attributing the features to an ontology of structural objects conflicts with claims often made by structuralists to the effect that their structuralist theses are versions of Quine’s ontological relativity or Putnam’s internal realism. I describe and argue for an alternative explanation for these features which instead explains the attributes them to the mathematical practice of representing numbers using more concrete tokens, such as sets, strokes and so on.