Results 1 
4 of
4
A NATURAL AXIOMATIZATION OF COMPUTABILITY AND PROOF OF CHURCH’S THESIS
"... Abstract. Church’s Thesis asserts that the only numeric functions that can be calculated by effective means are the recursive ones, which are the same, extensionally, as the Turingcomputable numeric functions. The Abstract State Machine Theorem states that every classical algorithm is behaviorally e ..."
Abstract

Cited by 40 (17 self)
 Add to MetaCart
(Show Context)
Abstract. Church’s Thesis asserts that the only numeric functions that can be calculated by effective means are the recursive ones, which are the same, extensionally, as the Turingcomputable numeric functions. The Abstract State Machine Theorem states that every classical algorithm is behaviorally equivalent to an abstract state machine. This theorem presupposes three natural postulates about algorithmic computation. Here, we show that augmenting those postulates with an additional requirement regarding basic operations gives a natural axiomatization of computability and a proof of Church’s Thesis, as Gödel and others suggested may be possible. In a similar way, but with a different set of basic operations, one can prove Turing’s Thesis, characterizing the effective string functions, and—in particular—the effectivelycomputable functions on string representations of numbers.
Proving Church’s Thesis. Abstract
 Proceedings of Second International Symposium on Computer Science in Russia, CRS 2007, LNCS 4649
, 2007
"... ..."
(Show Context)
A natural axiomatization of Church’s thesis
, 2007
"... The Abstract State Machine Thesis asserts that every classical algorithm is behaviorally equivalent to an abstract state machine. This thesis has been shown to follow from three natural postulates about algorithmic computation. Here, we prove that augmenting those postulates with an additional requ ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
(Show Context)
The Abstract State Machine Thesis asserts that every classical algorithm is behaviorally equivalent to an abstract state machine. This thesis has been shown to follow from three natural postulates about algorithmic computation. Here, we prove that augmenting those postulates with an additional requirement regarding basic operations implies Church’s Thesis, namely, that the only numeric functions that can be calculated by effective means are the recursive ones (which are the same, extensionally, as the Turingcomputable numeric functions). In particular, this gives a natural axiomatization of Church’s Thesis, as Gödel and others suggested may be possible.
Effectiveness
, 2011
"... We describe axiomatizations of several aspects of effectiveness: effectiveness of transitions; effectiveness relative to oracles; and absolute effectiveness, as posited by the ChurchTuring Thesis. ..."
Abstract
 Add to MetaCart
(Show Context)
We describe axiomatizations of several aspects of effectiveness: effectiveness of transitions; effectiveness relative to oracles; and absolute effectiveness, as posited by the ChurchTuring Thesis.