Results 1 
2 of
2
Universes for Generic Programs and Proofs in Dependent Type Theory
 Nordic Journal of Computing
, 2003
"... We show how to write generic programs and proofs in MartinL of type theory. To this end we consider several extensions of MartinL of's logical framework for dependent types. Each extension has a universes of codes (signatures) for inductively defined sets with generic formation, introduction, el ..."
Abstract

Cited by 42 (2 self)
 Add to MetaCart
We show how to write generic programs and proofs in MartinL of type theory. To this end we consider several extensions of MartinL of's logical framework for dependent types. Each extension has a universes of codes (signatures) for inductively defined sets with generic formation, introduction, elimination, and equality rules. These extensions are modeled on Dybjer and Setzer's finitely axiomatized theories of inductiverecursive definitions, which also have a universe of codes for sets, and generic formation, introduction, elimination, and equality rules.
Small Induction Recursion
"... Abstract. There are several different approaches to the theory of data types. At the simplest level, polynomials and containers give a theory of data types as free standing entities. At a second level of complexity, dependent polynomials and indexed containers handle more sophisticated data types in ..."
Abstract
 Add to MetaCart
Abstract. There are several different approaches to the theory of data types. At the simplest level, polynomials and containers give a theory of data types as free standing entities. At a second level of complexity, dependent polynomials and indexed containers handle more sophisticated data types in which the data have an associated indices which can be used to store important computational information. The crucial and salient feature of dependent polynomials and indexed containers is that the index types are defined in advance of the data. At the most sophisticated level, inductionrecursion allows us to define data and indices simultaneously. This work investigates the relationship between the theory of small inductive recursive definitions and the theory of dependent polynomials and indexed containers. Our central result is that the expressiveness of small inductive recursive definitions is exactly the same as that of dependent polynomials and indexed containers. A second contribution of this paper is the definition of morphisms of small inductive recursive definitions. This allows us to extend our main result to an equivalence