Results 1  10
of
137
DESIGN, IMPLEMENTATION, AND EVALUATION OF THE CONSTRAINT LANGUAGE cc(FD)
 J. LOGIC PROGRAMMING 1994:19, 20:1679
, 1994
"... This paper describes the design, implementation, and applications of the constraint logic language cc(FD). cc(FD) is a declarative nondeterministic constraint logic language over finite domains based on the cc framework [33], an extension of the CLP scheme [21]. Its constraint solver includes (nonl ..."
Abstract

Cited by 166 (9 self)
 Add to MetaCart
This paper describes the design, implementation, and applications of the constraint logic language cc(FD). cc(FD) is a declarative nondeterministic constraint logic language over finite domains based on the cc framework [33], an extension of the CLP scheme [21]. Its constraint solver includes (nonlinear) arithmetic constraints over natural numbers which are approximated using domain and interval consistency. The main novelty of cc(FD) is the inclusion of a number of generalpurpose combinators, in particular cardinality, constructive disjunction, and blocking implication, in conjunction with new constraint operations such as constraint entailment and generalization. These combinators signi cantly improve the operational expressiveness, extensibility, and flexibility of CLP languages and allow issues such as the definition of nonprimitive constraints and disjunctions to be tackled at the language level. The implementation of cc(FD) (about 40,000 lines of C) includes a WAMbased engine [44], optimal arcconsistency algorithms based on AC5 [40], and incremental implementation of the combinators. Results on numerous problems, including scheduling, resource allocation, sequencing, packing, and hamiltonian paths are reported and indicate that cc(FD) comes close to procedural languages on a number of combinatorial problems. In addition, a small cc(FD) program was able to nd the optimal solution and prove optimality to a famous 10/10 disjunctive scheduling problem [29], which was left open for more than 20 years and nally solved in 1986.
Using Constraint Programming and Local Search Methods to Solve Vehicle Routing Problems
, 1998
"... We use a local search method we term Large Neighbourhood Search (LNS) for solving vehicle routing problems. LNS meshes well with constraint programming technology and is analogous to the shuffling technique of jobshop scheduling. The technique explores a large neighbourhood of the current solution ..."
Abstract

Cited by 137 (2 self)
 Add to MetaCart
We use a local search method we term Large Neighbourhood Search (LNS) for solving vehicle routing problems. LNS meshes well with constraint programming technology and is analogous to the shuffling technique of jobshop scheduling. The technique explores a large neighbourhood of the current solution by selecting a number of customer visits to remove from the routing plan, and reinserting these visits using a constraintbased tree search. We analyse the performance of LNS on a number of vehicle routing benchmark problems. Unlike related methods, we use Limited Discrepancy Search during the tree search to reinsert visits. We also maintain diversity during search by dynamically altering the number of visits to be removed, and by using a randomised choice method for selecting visits to remove. We analyse the performance of our method for various parameter settings controlling the discrepancy limit, the dynamicity of the size of the removal set, and the randomness of the choice. We demonst...
Improved CLP Scheduling with Task Intervals
, 1994
"... In this paper we present a new technique that can be used to improve performance of job scheduling with a constraint programming language. We show how, by focusing on some special sets of tasks, one can bring CLP in the same range of efficiency as traditional OR algorithms on a classical benchmark ( ..."
Abstract

Cited by 97 (6 self)
 Add to MetaCart
In this paper we present a new technique that can be used to improve performance of job scheduling with a constraint programming language. We show how, by focusing on some special sets of tasks, one can bring CLP in the same range of efficiency as traditional OR algorithms on a classical benchmark (MT10 [MT63]), thus making CLP both a flexible and an efficient technique for such combinatorial problems. We then present our programming methodology which we have successfully used on many problems, and draw conclusions on what features constraint programming languages should offer to allow its use. 1. Introduction Reallife scheduling problems are often the composition of various wellidentified hard problems. In the previous years, we have worked on applications such as tasktechnician assignments [CK92] or staff timetable scheduling [CGL93] and developed a methodology for solving such problems with an extensible constraint logic programming language. In both cases we have applied the s...
Improved Approximation Algorithms for Shop Scheduling Problems
, 1994
"... In the job shop scheduling problem we are given m machines and n jobs; a job consists of a sequence of operations, each of which must be processed on a specified machine; the objective is to complete all jobs as quickly as possible. This problem is strongly NPhard even for very restrictive special ..."
Abstract

Cited by 84 (7 self)
 Add to MetaCart
In the job shop scheduling problem we are given m machines and n jobs; a job consists of a sequence of operations, each of which must be processed on a specified machine; the objective is to complete all jobs as quickly as possible. This problem is strongly NPhard even for very restrictive special cases. We give the first randomized and deterministic polynomialtime algorithms that yield polylogarithmic approximations to the optimal length schedule. Our algorithms also extend to the more general case where a job is given not by a linear ordering of the machines on which it must be processed but by an arbitrary partial order. Comparable bounds can also be obtained when there are m 0 types of machines, a specified number of machines of each type, and each operation must be processed on one of the machines of a specified type, as well as for the problem of scheduling unrelated parallel machines subject to chain precedence constraints. Key Words: scheduling, approximation algorithms AM...
A New Approach to Computing Optimal Schedules for the JobShop Scheduling Problem
 In Proc. of the 5th International IPCO Conference
, 1996
"... . From a computational point of view, the jobshop scheduling problem is one of the most notoriously intractable NPhard optimization problems. In spite of a great deal of substantive research, there are instances of even quite modest size for which it is beyond our current understanding to solv ..."
Abstract

Cited by 81 (0 self)
 Add to MetaCart
. From a computational point of view, the jobshop scheduling problem is one of the most notoriously intractable NPhard optimization problems. In spite of a great deal of substantive research, there are instances of even quite modest size for which it is beyond our current understanding to solve to optimality. We propose several new lower bounding procedures for this problem, and show how to incorporate them into a branchandbound procedure. Unlike almost all of the work done on this problem in the past thirty years, our enumerative procedure is not based on the disjunctive graph formulation, but is rather a timeoriented branching scheme. We show that our approach can solve most of the standard benchmark instances, and obtains the best known lower bounds on each. 1 Introduction In the jobshop scheduling problem we are given a set of n jobs, J , a set of m machines, M, and a set of operations, O. Each job consists of a chain of operations, let O j be the chain of operati...
Algorithms for hybrid MILP/CP models for a class of optimization problems
 INFORMS Journal on Computing
, 2001
"... The goal of this paper is to develop models and methods that use complementary strengths of Mixed Integer Linear Programming (MILP) and Constraint Programming (CP) techniques to solve problems that are otherwise intractable if solved using either of the two methods. The class of problems considered ..."
Abstract

Cited by 66 (11 self)
 Add to MetaCart
The goal of this paper is to develop models and methods that use complementary strengths of Mixed Integer Linear Programming (MILP) and Constraint Programming (CP) techniques to solve problems that are otherwise intractable if solved using either of the two methods. The class of problems considered in this paper have the characteristic that only a subset of the binary variables have nonzero objective function coefficients if modeled as an MILP. This class of problems is formulated as a hybrid MILP/CP model that involves some of the MILP constraints, a reduced set of the CP constraints, and equivalence relations between the MILP and the CP variables. An MILP/CP based decomposition method and an LP/CPbased branchandbound algorithm are proposed to solve these hybrid models. Both these algorithms rely on the same relaxed MILP and feasibility CP problems. An application example is considered in which the leastcost schedule has to be derived for processing a set of orders with release and due dates using a set of dissimilar parallel machines. It is shown that this problem can be modeled as an MILP, a CP, a combined MILPCP OPL model (Van Hentenryck 1999), and a hybrid MILP/CP model. The computational performance of these models for several sets shows that the hybrid MILP/CP model can achieve two to three orders of magnitude reduction in CPU time.
Improved scheduling algorithms for minsum criteria
 Automata, Languages and Programming, volume 1099 of Lecture Notes in Computer Science
, 1996
"... Abstract. We consider the problem of finding nearoptimal solutions for a variety of A/I)hard scheduling problems for which the objective is to minimize the total weighted completion time. Recent work has led to the development of several techniques that yield constant worstcase bounds in a number ..."
Abstract

Cited by 65 (18 self)
 Add to MetaCart
Abstract. We consider the problem of finding nearoptimal solutions for a variety of A/I)hard scheduling problems for which the objective is to minimize the total weighted completion time. Recent work has led to the development of several techniques that yield constant worstcase bounds in a number of settings. We continue this line of research by providing improved performance guarantees for several of the most basic scheduling models, and by giving the first constant performance guarantee for a number of more realistically constrained scheduling problems. For example, we give an improved performance guarantee for minimizing the total weighted completion time subject to release dates on a single machine, and subject to release dates and/or precedence constraints on identical parallel machines. We also give improved bounds on the power of preemption in scheduling jobs with release dates on parallel machines. We give improved online algorithms for many more realistic scheduling models, including environments with parallelizable jobs, jobs contending for shared resources, tree precedenceconstrained jobs, as well as shop scheduling models. In several of these cases, we give the first constant performance guarantee achieved online. Finally, one of the consequences of our work is the surprising structural property that there are schedules that simultaneously approximate the optimal makespan and the optimal weighted completion time to within small constants. Not only do such schedules exist, but we can find approximations to them with an online algorithm. 1
Local Search With Constraint Propagation and ConflictBased Heuristics
, 2002
"... Search algorithms for solving CSP (Constraint Satisfaction Problems) usually fall into one of two main families: local search algorithms and systematic algorithms. Both families have their advantages. Designing hybrid approaches seems promising since those advantages may be combined into a single ap ..."
Abstract

Cited by 65 (17 self)
 Add to MetaCart
Search algorithms for solving CSP (Constraint Satisfaction Problems) usually fall into one of two main families: local search algorithms and systematic algorithms. Both families have their advantages. Designing hybrid approaches seems promising since those advantages may be combined into a single approach. In this paper, we present a new hybrid technique. It performs a local search over partial assignments instead of complete assignments, and uses filtering techniques and conflictbased techniques to efficiently guide the search. This new technique benefits from both classical approaches: aprioripruning of the search space from filteringbased search and possible repair of early mistakes from local search. We focus on a specific version of this technique: tabu decisionrepair.Experiments done on openshop scheduling problems show that our approach competes well with the best highly specialized algorithms. 2002 Elsevier Science B.V. All rights reserved.
Deterministic JobShop Scheduling: Past, Present and Future
 European Journal of Operational Research
, 1998
"... : Due to the stubborn nature of the deterministic jobshop scheduling problem many solutions proposed are of hybrid construction cutting across the traditional disciplines. The problem has been investigated from a variety of perspectives resulting in several analytical techniques combining generic ..."
Abstract

Cited by 65 (2 self)
 Add to MetaCart
: Due to the stubborn nature of the deterministic jobshop scheduling problem many solutions proposed are of hybrid construction cutting across the traditional disciplines. The problem has been investigated from a variety of perspectives resulting in several analytical techniques combining generic as well as problem specific strategies. We seek to assess a subclass of this problem in which the objective is minimising makespan, by providing an overview of the history, the techniques used and the researchers involved. The sense and direction of their work is evaluated by assessing the reported results of their techniques on the available benchmark problems. From these results the current situation and pointers for future work are provided. KEYWORDS: Scheduling Theory; JobShop; Review; Computational Study; 1. INTRODUCTION Current market trends such as consumer demand for variety, shorter product life cycles and competitive pressure to reduce costs have resulted in the need for zero i...
A Theoretical and Experimental Comparison of Constraint Propagation Techniques for Disjunctive Scheduling
, 1995
"... Disjunctive constraints are widely used to ensure that the time intervals over whichtwo activities require the same resource cannot overlap: if a resource is required bytwo activities A and B, the disjunctive constraint states that either A precedes B or B precedes A. The #propagation " of di ..."
Abstract

Cited by 60 (6 self)
 Add to MetaCart
Disjunctive constraints are widely used to ensure that the time intervals over whichtwo activities require the same resource cannot overlap: if a resource is required bytwo activities A and B, the disjunctive constraint states that either A precedes B or B precedes A. The #propagation " of disjunctive constraints consists in determining cases where only one of the two orderings is feasible. It results in updating the timebounds of the two activities. The standard algorithm for propagating disjunctive constraints achieves arcBconsistency.Twotypes of methods that provide more precise timebounds are studied and compared. The #rst type of method consists in determining whether an activity A must, can, or cannot be the #rst or the last to execute among a set of activities that require the same resource. The second consists in comparing the amount of #resource energy" required over a time interval #t 1 t 2 #to the amount of energy that is available over the same interval. The main result of the study is an implementation of the #rst method in Ilog Schedule, a generic tool for constraintbased scheduling which exhibits performance in the same range of e#ciency as speci#c operations research algorithms.