Results 1  10
of
39
From subfactors to categories and topology I. Frobenius algebras in and Morita equivalence of tensor categories
 J. Pure Appl. Alg
, 2003
"... We consider certain categorical structures that are implicit in subfactor theory. Making the connection between subfactor theory (at finite index) and category theory explicit sheds light on both subjects. Furthermore, it allows various generalizations of these structures, e.g. to arbitrary ground f ..."
Abstract

Cited by 108 (9 self)
 Add to MetaCart
We consider certain categorical structures that are implicit in subfactor theory. Making the connection between subfactor theory (at finite index) and category theory explicit sheds light on both subjects. Furthermore, it allows various generalizations of these structures, e.g. to arbitrary ground fields, and the proof of new results about topological invariants in three dimensions. The central notion is that of a Frobenius algebra in a tensor category A, which reduces to the classical notion if A = FVect, where F is a field. An object X ∈ A with twosided dual X gives rise to a Frobenius algebra in A, and under weak additional conditions we prove a converse: There exists a bicategory E with ObjE = {A, B} such that EndE(A) ⊗ ≃ A and such that there are J, J: B ⇋ A producing the given Frobenius algebra. Many properties (additivity, sphericity, semisimplicity,...) of A carry over to the bicategory E. We define weak monoidal Morita equivalence of tensor categories, denoted A ≈ B, and establish a correspondence between Frobenius algebras in A and tensor categories B ≈ A. While considerably weaker than equivalence of tensor categories, weak monoidal Morita equivalence A ≈ B has remarkable consequences: A and B have equivalent (as braided tensor categories) quantum doubles (‘centers’) and (if A, B are semisimple spherical or ∗categories) have equal dimensions and give rise the same state sum invariant of closed oriented 3manifolds as recently defined by Barrett and Westbury. An instructive example is provided by finite dimensional semisimple and cosemisimple Hopf algebras, for which we prove H − mod ≈ ˆH − mod. The present formalism permits a fairly complete analysis of the center of a semisimple spherical category, which is the subject of the companion paper math.CT/0111205. 1
Higher gauge theory
"... Just as gauge theory describes the parallel transport of point particles using connections on bundles, higher gauge theory describes the parallel transport of 1dimensional objects (e.g. strings) using 2connections on 2bundles. A 2bundle is a categorified version of a bundle: that is, one where t ..."
Abstract

Cited by 65 (15 self)
 Add to MetaCart
(Show Context)
Just as gauge theory describes the parallel transport of point particles using connections on bundles, higher gauge theory describes the parallel transport of 1dimensional objects (e.g. strings) using 2connections on 2bundles. A 2bundle is a categorified version of a bundle: that is, one where the fiber is not a manifold but a category with a suitable smooth structure. Where gauge theory uses Lie groups and Lie algebras, higher gauge theory uses their categorified analogues: Lie 2groups and Lie 2algebras. We describe a theory of 2connections on principal 2bundles and explain how this is related to Breen and Messing’s theory of connections on nonabelian gerbes. The distinctive feature of our theory is that a 2connection allows parallel transport along paths and surfaces in a parametrizationindependent way. In terms of Breen and Messing’s framework, this requires that the ‘fake curvature ’ must vanish. In this paper we summarize the main results of our theory without proofs. 1
Frobenius monads and pseudomonoids
 2CATEGORIES COMPANION 73
, 2004
"... Six equivalent definitions of Frobenius algebra in a monoidal category are provided. In a monoidal bicategory, a pseudoalgebra is Frobenius if and only i f it is star autonomous. Autonomous pseudoalgebras are also Frobenius. What i t means for a morphism of a bicategory to be a projective equivalenc ..."
Abstract

Cited by 38 (4 self)
 Add to MetaCart
(Show Context)
Six equivalent definitions of Frobenius algebra in a monoidal category are provided. In a monoidal bicategory, a pseudoalgebra is Frobenius if and only i f it is star autonomous. Autonomous pseudoalgebras are also Frobenius. What i t means for a morphism of a bicategory to be a projective equivalence is defined; this concept is related to &quot;strongly separable &quot; Frobenius algebras and &quot;weak monoidal Morita equivalence&quot;. Wreath products of Frobenius algebras are discussed.
Pseudo limits, biadjoints, and pseudo algebras: categorical foundations of conformal field theory
 Mem. Amer. Math. Soc
"... The purpose of this paper is to work out the categorical basis for the foundations of Conformal Field Theory. The definition of Conformal Field Theory was outlined in Segal [45] and recently given in [24] and [25]. Concepts of 2category theory, such as versions of algebra, limit, colimit, and adjun ..."
Abstract

Cited by 28 (11 self)
 Add to MetaCart
(Show Context)
The purpose of this paper is to work out the categorical basis for the foundations of Conformal Field Theory. The definition of Conformal Field Theory was outlined in Segal [45] and recently given in [24] and [25]. Concepts of 2category theory, such as versions of algebra, limit, colimit, and adjunction, are necessary for this
Mackaay: Categorical representations of categorical groups
, 2004
"... The representation theory for categorical groups is constructed. Each categorical group determines a monoidal bicategory of representations. Typically, these categories contain representations which are indecomposable but not irreducible. A simple example is computed in explicit detail. 1 ..."
Abstract

Cited by 25 (0 self)
 Add to MetaCart
The representation theory for categorical groups is constructed. Each categorical group determines a monoidal bicategory of representations. Typically, these categories contain representations which are indecomposable but not irreducible. A simple example is computed in explicit detail. 1
MONADS AND COMONADS ON MODULE CATEGORIES
"... known in module theory that any Abimodule B is an Aring if and only if the functor − ⊗A B: MA → MA is a monad (or triple). Similarly, an Abimodule C is an Acoring provided the functor − ⊗A C: MA → MA is a comonad (or cotriple). The related categories of modules (or algebras) of − ⊗A B and comodu ..."
Abstract

Cited by 24 (13 self)
 Add to MetaCart
(Show Context)
known in module theory that any Abimodule B is an Aring if and only if the functor − ⊗A B: MA → MA is a monad (or triple). Similarly, an Abimodule C is an Acoring provided the functor − ⊗A C: MA → MA is a comonad (or cotriple). The related categories of modules (or algebras) of − ⊗A B and comodules (or coalgebras) of − ⊗A C are well studied in the literature. On the other hand, the right adjoint endofunctors HomA(B, −) and HomA(C, −) are a comonad and a monad, respectively, but the corresponding (co)module categories did not find
Graph Rewriting, Constraint Solving and Tiles for Coordinating Distributed Systems
 Applied Categorical Structures
, 1999
"... . In this paper we describe an approach to model the dynamics of distributed systems. For distributed systems we mean systems consisting of concurrent processes communicating via shared ports and posing certain synchronization requirements, via the ports, to the adjacent processes. The basic idea is ..."
Abstract

Cited by 19 (15 self)
 Add to MetaCart
(Show Context)
. In this paper we describe an approach to model the dynamics of distributed systems. For distributed systems we mean systems consisting of concurrent processes communicating via shared ports and posing certain synchronization requirements, via the ports, to the adjacent processes. The basic idea is to use graphs to represent states of such systems, and graph rewriting to represent their evolution. The kind of graph rewriting we use is based on simple contextfree productions which are however combined by means of a synchronization mechanism. This allows for a good level of expressivity in the system without sacrifying full distribution. To formally model this kind of graph rewriting, however, we do not adopt the classical graph rewriting style but a more general framework, called the tile model, which allows for a clear separation between sequential rewriting and synchronization. Then, since the problem of satisfying the synchronization requirements may be a complex combinatorial pro...
Lax monoids, pseudooperads, and convolution
 In Diagrammatic Morphisms and Applications, volume 318 of Contemporary Mathematics
, 2003
"... Various weakenings of monoidal category have been in existence almost as long as the notion itself. There are the multicategories of Lambek [Lk], the promonoidal categories of [D1], and the lax monoidal categories involving nfold tensor products2 with notnecessarilyinvertible associativity and un ..."
Abstract

Cited by 15 (0 self)
 Add to MetaCart
Various weakenings of monoidal category have been in existence almost as long as the notion itself. There are the multicategories of Lambek [Lk], the promonoidal categories of [D1], and the lax monoidal categories involving nfold tensor products2 with notnecessarilyinvertible associativity and unit constraints. There is a diamond Multicategories Monoidal categories Promonoidal categories Lax monoidal categories in which moving down along a side of gradient 1 imposes invertibility on constraints, while moving down along a side of gradient Ð1 imposes representability on the multihoms. A strong form of representability (see Hermida [H]) leads us from the top of the diamond to the bottom in one step. Promonoidal categories were introduced to explain a large variety of convolution monoidal structures on functor categories. What we want to point out in this paper is that convolution formulas are available in weaker settings, but, of course, the resultant functor categories bear weaker monoidal structures too.
Pasting Diagrams in nCategories with Applications to Coherence Theorems and Categories of Paths
, 1987
"... ..."
Tiles, Rewriting Rules and CCS
"... In [12] we introduced the tile model, a framework encompassing a wide class of computational systems, whose behaviour can be described by certain rewriting rules. We gathered our inspiration both from the world of term rewriting and of concurrency theory, and our formalism recollects many properties ..."
Abstract

Cited by 14 (8 self)
 Add to MetaCart
In [12] we introduced the tile model, a framework encompassing a wide class of computational systems, whose behaviour can be described by certain rewriting rules. We gathered our inspiration both from the world of term rewriting and of concurrency theory, and our formalism recollects many properties of these sources. For example, it provides a compositional way to describe both the states and the sequences of transitions performed by a given system, stressing their distributed nature. Moreover, a suitable notion of typed proof allows to take into account also those formalisms relying on the notions of synchronization and sideeffects to determine the actual behaviour of a system. In this work we narrow our scope, presenting a restricted version of our tile model and focussing our attention on its expressive power. To this aim, we recall the basic definitions of the process algebras paradigm [3,24], centering the paper on the recasting of this framework in our formalism.