Results 1 
1 of
1
A dialecticalike model of linear logic
 In Proc. Conf. on Category Theory and Computer Science, LNCS 389
, 1989
"... The aim of this work is to define the categories GC, describe their categorical structure and show they are a model of Linear Logic. The second goal is to relate those categories to the Dialectica categories DC, cf.[DCJ, using different functors for the exponential “of course”. It is hoped that this ..."
Abstract

Cited by 27 (6 self)
 Add to MetaCart
The aim of this work is to define the categories GC, describe their categorical structure and show they are a model of Linear Logic. The second goal is to relate those categories to the Dialectica categories DC, cf.[DCJ, using different functors for the exponential “of course”. It is hoped that this categorical model of Linear Logic should help us to get a better understanding of the logic, which is, perhaps, the first nonintuitionistic constructive logic. This work is divided in two parts, each one with 3 sections. The first section shows that GC is a monoidal closed category and describes bifunctors for tensor “0”, internal horn “[—, —]“, par “u”, cartesian products “& “ and coproducts “s”. The second section defines linear negation as a contravariant functor obtained evaluating the internal horn bifunctor at a “dualising object”. The third section makes explicit the connections with Linear Logic, while the fourth introduces the comonads used to model the connective “of course”. Section 5 discusses some properties of these cornonads and finally section 6 makes the logical connections once more. This work grew out of suggestions of J.Y. Girard at the AMSConference on Categories, Logic and Computer Science in Boulder 1987, where I presented my earlier work on the Dialectica categories, hence the title. Still on the lines of given credit where it is due, I would like to say that Martin Hyland, under whose supervision this work was written, has been a continuous source of ideas and inspiration. Many heartfelt thanks to him. 1. The main definitions We start with a finitely complete category C. Then to describe GC say that its objects are relations on objects of C, that is monics A ~ U x X, which we usually write as (U ~ X). Given two such objects, (U ~ X) and (V L Y), which we call simply A and B, a morphism from A to B consists of a pair of maps in C, f: U — * V and F 4 Y —+ X, such that a pullback condition is satisfied, namely that where (~~)_1 represents puilbacks. (U x F) 1 (o~) ~ (f x Y) 1 (/3), (1) 342 Using diagrams, we say (f,F) is a morphism in GC if there is a (unique) map in ~, k: A ’ —~B ’ making the triangle commute: a~I Ia