Results 11  20
of
197
Compressed Sensing and Redundant Dictionaries
"... This article extends the concept of compressed sensing to signals that are not sparse in an orthonormal basis but rather in a redundant dictionary. It is shown that a matrix, which is a composition of a random matrix of certain type and a deterministic dictionary, has small restricted isometry con ..."
Abstract

Cited by 140 (16 self)
 Add to MetaCart
(Show Context)
This article extends the concept of compressed sensing to signals that are not sparse in an orthonormal basis but rather in a redundant dictionary. It is shown that a matrix, which is a composition of a random matrix of certain type and a deterministic dictionary, has small restricted isometry constants. Thus, signals that are sparse with respect to the dictionary can be recovered via Basis Pursuit from a small number of random measurements. Further, thresholding is investigated as recovery algorithm for compressed sensing and conditions are provided that guarantee reconstruction with high probability. The different schemes are compared by numerical experiments.
Distributed compressed sensing
, 2005
"... Compressed sensing is an emerging field based on the revelation that a small collection of linear projections of a sparse signal contains enough information for reconstruction. In this paper we introduce a new theory for distributed compressed sensing (DCS) that enables new distributed coding algori ..."
Abstract

Cited by 139 (25 self)
 Add to MetaCart
(Show Context)
Compressed sensing is an emerging field based on the revelation that a small collection of linear projections of a sparse signal contains enough information for reconstruction. In this paper we introduce a new theory for distributed compressed sensing (DCS) that enables new distributed coding algorithms for multisignal ensembles that exploit both intra and intersignal correlation structures. The DCS theory rests on a new concept that we term the joint sparsity of a signal ensemble. We study in detail three simple models for jointly sparse signals, propose algorithms for joint recovery of multiple signals from incoherent projections, and characterize theoretically and empirically the number of measurements per sensor required for accurate reconstruction. We establish a parallel with the SlepianWolf theorem from information theory and establish upper and lower bounds on the measurement rates required for encoding jointly sparse signals. In two of our three models, the results are asymptotically bestpossible, meaning that both the upper and lower bounds match the performance of our practical algorithms. Moreover, simulations indicate that the asymptotics take effect with just a moderate number of signals. In some sense DCS is a framework for distributed compression of sources with memory, which has remained a challenging problem for some time. DCS is immediately applicable to a range of problems in sensor networks and arrays.
Compressed Sensing MRI
"... Compressed sensing (CS) aims to reconstruct signals and images from significantly fewer measurements than were traditionally thought necessary. Magnetic Resonance Imaging (MRI) is an essential medical imaging tool with an inherently slow data acquisition process. Applying CS to MRI offers potentiall ..."
Abstract

Cited by 135 (3 self)
 Add to MetaCart
Compressed sensing (CS) aims to reconstruct signals and images from significantly fewer measurements than were traditionally thought necessary. Magnetic Resonance Imaging (MRI) is an essential medical imaging tool with an inherently slow data acquisition process. Applying CS to MRI offers potentially significant scan time reductions, with benefits for patients and health
Combinatorial Algorithms for Compressed Sensing
 In Proc. of SIROCCO
, 2006
"... Abstract — In sparse approximation theory, the fundamental problem is to reconstruct a signal A ∈ R n from linear measurements 〈A, ψi 〉 with respect to a dictionary of ψi’s. Recently, there is focus on the novel direction of Compressed Sensing [1] where the reconstruction can be done with very few—O ..."
Abstract

Cited by 117 (1 self)
 Add to MetaCart
(Show Context)
Abstract — In sparse approximation theory, the fundamental problem is to reconstruct a signal A ∈ R n from linear measurements 〈A, ψi 〉 with respect to a dictionary of ψi’s. Recently, there is focus on the novel direction of Compressed Sensing [1] where the reconstruction can be done with very few—O(k log n)— linear measurements over a modified dictionary if the signal is compressible, that is, its information is concentrated in k coefficients with the original dictionary. In particular, these results [1], [2], [3] prove that there exists a single O(k log n) × n measurement matrix such that any such signal can be reconstructed from these measurements, with error at most O(1) times the worst case error for the class of such signals. Compressed sensing has generated tremendous excitement both because of the sophisticated underlying Mathematics and because of its potential applications. In this paper, we address outstanding open problems in Compressed Sensing. Our main result is an explicit construction of a nonadaptive measurement matrix and the corresponding reconstruction algorithm so that with a number of measurements polynomial in k, log n, 1/ε, we can reconstruct compressible signals. This is the first known polynomial time explicit construction of any such measurement matrix. In addition, our result improves the error guarantee from O(1) to 1 + ε and improves the reconstruction time from poly(n) to poly(k log n). Our second result is a randomized construction of O(k polylog(n)) measurements that work for each signal with high probability and gives perinstance approximation guarantees rather than over the class of all signals. Previous work on Compressed Sensing does not provide such perinstance approximation guarantees; our result improves the best known number of measurements known from prior work in other areas including Learning Theory [4], [5], Streaming algorithms [6], [7], [8] and Complexity Theory [9] for this case. Our approach is combinatorial. In particular, we use two parallel sets of group tests, one to filter and the other to certify and estimate; the resulting algorithms are quite simple to implement. I.
Sensing by Random Convolution
 IEEE Int. Work. on Comp. Adv. MultiSensor Adaptive Proc., CAMPSAP
, 2007
"... Abstract. This paper outlines a new framework for compressive sensing: convolution with a random waveform followed by random time domain subsampling. We show that sensing by random convolution is a universally efficient data acquisition strategy in that an ndimensional signal which is S sparse in a ..."
Abstract

Cited by 116 (8 self)
 Add to MetaCart
(Show Context)
Abstract. This paper outlines a new framework for compressive sensing: convolution with a random waveform followed by random time domain subsampling. We show that sensing by random convolution is a universally efficient data acquisition strategy in that an ndimensional signal which is S sparse in any fixed representation can be recovered from m � S log n measurements. We discuss two imaging scenarios — radar and Fourier optics — where convolution with a random pulse allows us to seemingly superresolve finescale features, allowing us to recover highresolution signals from lowresolution measurements. 1. Introduction. The new field of compressive sensing (CS) has given us a fresh look at data acquisition, one of the fundamental tasks in signal processing. The message of this theory can be summarized succinctly [7, 8, 10, 15, 32]: the number of measurements we need to reconstruct a signal depends on its sparsity rather than its bandwidth. These measurements, however, are different than the samples that
Counting faces of randomlyprojected polytopes when the projection radically lowers dimension
 J. of the AMS
, 2009
"... 1.1. Three surprises of high dimensions. This paper develops asymptotic methods to count faces of random highdimensional polytopes; a seemingly dry and unpromising pursuit. Yet our conclusions have surprising implications in statistics, probability, information theory, and signal processing with ..."
Abstract

Cited by 115 (8 self)
 Add to MetaCart
(Show Context)
1.1. Three surprises of high dimensions. This paper develops asymptotic methods to count faces of random highdimensional polytopes; a seemingly dry and unpromising pursuit. Yet our conclusions have surprising implications in statistics, probability, information theory, and signal processing with potential impacts in
A new compressive imaging camera architecture using opticaldomain compression
 in Proc. of Computational Imaging IV at SPIE Electronic Imaging
, 2006
"... Compressive Sensing is an emerging field based on the revelation that a small number of linear projections of a compressible signal contain enough information for reconstruction and processing. It has many promising implications and enables the design of new kinds of Compressive Imaging systems and ..."
Abstract

Cited by 108 (9 self)
 Add to MetaCart
Compressive Sensing is an emerging field based on the revelation that a small number of linear projections of a compressible signal contain enough information for reconstruction and processing. It has many promising implications and enables the design of new kinds of Compressive Imaging systems and cameras. In this paper, we develop a new camera architecture that employs a digital micromirror array to perform optical calculations of linear projections of an image onto pseudorandom binary patterns. Its hallmarks include the ability to obtain an image with a single detection element while sampling the image fewer times than the number of pixels. Other attractive properties include its universality, robustness, scalability, progressivity, and computational asymmetry. The most intriguing feature of the system is that, since it relies on a single photon detector, it can be adapted to image at wavelengths that are currently impossible with conventional CCD and CMOS imagers.
Compressive radar imaging
 Proc. 2007 IEEE Radar Conf
, 2007
"... Abstract—We introduce a new approach to radar imaging based on the concept of compressive sensing (CS). In CS, a lowdimensional, nonadaptive, linear projection is used to acquire an efficient representation of a compressible signal directly using just a few measurements. The signal is then reconstr ..."
Abstract

Cited by 107 (9 self)
 Add to MetaCart
(Show Context)
Abstract—We introduce a new approach to radar imaging based on the concept of compressive sensing (CS). In CS, a lowdimensional, nonadaptive, linear projection is used to acquire an efficient representation of a compressible signal directly using just a few measurements. The signal is then reconstructed by solving an inverse problem either through a linear program or a greedy pursuit. We demonstrate that CS has the potential to make two significant improvements to radar systems: (i) eliminating the need for the pulse compression matched filter at the receiver, and (ii) reducing the required receiver analogtodigital conversion bandwidth so that it need operate only at the radar reflectivity’s potentially low “information rate” rather than at its potentially high Nyquist rate. These ideas could enable the design of new, simplified radar systems, shifting the emphasis from expensive receiver hardware to smart signal recovery algorithms. I.
Signal Processing with Compressive Measurements
, 2009
"... The recently introduced theory of compressive sensing enables the recovery of sparse or compressible signals from a small set of nonadaptive, linear measurements. If properly chosen, the number of measurements can be much smaller than the number of Nyquistrate samples. Interestingly, it has been sh ..."
Abstract

Cited by 101 (25 self)
 Add to MetaCart
The recently introduced theory of compressive sensing enables the recovery of sparse or compressible signals from a small set of nonadaptive, linear measurements. If properly chosen, the number of measurements can be much smaller than the number of Nyquistrate samples. Interestingly, it has been shown that random projections are a nearoptimal measurement scheme. This has inspired the design of hardware systems that directly implement random measurement protocols. However, despite the intense focus of the community on signal recovery, many (if not most) signal processing problems do not require full signal recovery. In this paper, we take some first steps in the direction of solving inference problems—such as detection, classification, or estimation—and filtering problems using only compressive measurements and without ever reconstructing the signals involved. We provide theoretical bounds along with experimental results.
Compressive imaging for video representation and coding
 In Proceedings of Picture Coding Symposium (PCS
, 2006
"... Abstract. Compressive Sensing is an emerging field based on the revelation that a small group of nonadaptive linear projections of a compressible signal contains enough information for reconstruction and processing. In this paper, we propose algorithms and hardware to support a new theory of Compres ..."
Abstract

Cited by 88 (14 self)
 Add to MetaCart
(Show Context)
Abstract. Compressive Sensing is an emerging field based on the revelation that a small group of nonadaptive linear projections of a compressible signal contains enough information for reconstruction and processing. In this paper, we propose algorithms and hardware to support a new theory of Compressive Imaging. Our approach is based on a new digital image/video camera that directly acquires random projections of the light field without first collecting the pixels/voxels. Our camera architecture employs a digital micromirror array to perform optical calculations of linear projections of an image onto pseudorandom binary patterns. Its hallmarks include the ability to obtain an image with a single detection element while measuring the image/video fewer times than the number of pixels/voxels; this can significantly reduce the computation required for video acquisition/encoding. Since our system relies on a single photon detector, it can also be adapted to image at wavelengths that are currently impossible with conventional CCD and CMOS imagers. We are currently testing a prototype design for the camera and include experimental results. Index Terms: camera, compressive sensing, imaging, incoherent projections, linear programming, random