Results 1  10
of
375
How bad is selfish routing?
 JOURNAL OF THE ACM
, 2002
"... We consider the problem of routing traffic to optimize the performance of a congested network. We are given a network, a rate of traffic between each pair of nodes, and a latency function for each edge specifying the time needed to traverse the edge given its congestion; the objective is to route t ..."
Abstract

Cited by 506 (27 self)
 Add to MetaCart
We consider the problem of routing traffic to optimize the performance of a congested network. We are given a network, a rate of traffic between each pair of nodes, and a latency function for each edge specifying the time needed to traverse the edge given its congestion; the objective is to route traffic such that the sum of all travel times—the total latency—is minimized. In many settings, it may be expensive or impossible to regulate network traffic so as to implement an optimal assignment of routes. In the absence of regulation by some central authority, we assume that each network user routes its traffic on the minimumlatency path available to it, given the network congestion caused by the other users. In general such a “selfishly motivated ” assignment of traffic to paths will not minimize the total latency; hence, this lack of regulation carries the cost of decreased network performance. In this article, we quantify the degradation in network performance due to unregulated traffic. We prove that if the latency of each edge is a linear function of its congestion, then the total latency of the routes chosen by selfish network users is at most 4/3 times the minimum possible total latency (subject to the condition that all traffic must be routed). We also consider the more general setting in which edge latency functions are assumed only to be continuous and nondecreasing in the edge congestion. Here, the total
RapidlyExploring Random Trees: Progress and Prospects
 Algorithmic and Computational Robotics: New Directions
, 2000
"... this paper, which presents randomized, algorithmic techniques for path planning that are particular suited for problems that involve dierential constraints. ..."
Abstract

Cited by 233 (25 self)
 Add to MetaCart
this paper, which presents randomized, algorithmic techniques for path planning that are particular suited for problems that involve dierential constraints.
Informationtheoretic analysis of information hiding
 IEEE Transactions on Information Theory
, 2003
"... Abstract—An informationtheoretic analysis of information hiding is presented in this paper, forming the theoretical basis for design of informationhiding systems. Information hiding is an emerging research area which encompasses applications such as copyright protection for digital media, watermar ..."
Abstract

Cited by 228 (18 self)
 Add to MetaCart
Abstract—An informationtheoretic analysis of information hiding is presented in this paper, forming the theoretical basis for design of informationhiding systems. Information hiding is an emerging research area which encompasses applications such as copyright protection for digital media, watermarking, fingerprinting, steganography, and data embedding. In these applications, information is hidden within a host data set and is to be reliably communicated to a receiver. The host data set is intentionally corrupted, but in a covert way, designed to be imperceptible to a casual analysis. Next, an attacker may seek to destroy this hidden information, and for this purpose, introduce additional distortion to the data set. Side information (in the form of cryptographic keys and/or information about the host signal) may be available to the information hider and to the decoder. We formalize these notions and evaluate the hiding capacity, which upperbounds the rates of reliable transmission and quantifies the fundamental tradeoff between three quantities: the achievable informationhiding rates and the allowed distortion levels for the information hider and the attacker. The hiding capacity is the value of a game between the information hider and the attacker. The optimal attack strategy is the solution of a particular ratedistortion problem, and the optimal hiding strategy is the solution to a channelcoding problem. The hiding capacity is derived by extending the Gel’fand–Pinsker theory of communication with side information at the encoder. The extensions include the presence of distortion constraints, side information at the decoder, and unknown communication channel. Explicit formulas for capacity are given in several cases, including Bernoulli and Gaussian problems, as well as the important special case of small distortions. In some cases, including the last two above, the hiding capacity is the same whether or not the decoder knows the host data set. It is shown that many existing informationhiding systems in the literature operate far below capacity. Index Terms—Channel capacity, cryptography, fingerprinting, game theory, information hiding, network information theory,
Competitive Routing in MultiUser Communication Networks
 IEEE/ACM Transactions on Networking
, 1993
"... We consider a communication network shared by several selfish users. Each user seeks to optimize its own performance by controlling the routing of its given flow demand, giving rise to a noncooperative game. We investigate the Nash equilibrium of such systems. For a twonode multiplelinks system, ..."
Abstract

Cited by 183 (20 self)
 Add to MetaCart
We consider a communication network shared by several selfish users. Each user seeks to optimize its own performance by controlling the routing of its given flow demand, giving rise to a noncooperative game. We investigate the Nash equilibrium of such systems. For a twonode multiplelinks system, uniqueness of the Nash equilibrium is proved under reasonable convexity conditions. It is shown that this Nash equilibrium point possesses interesting monotonicity properties. For general networks, these convexity conditions are not sufficient for guaranteeing uniqueness, and a counter example is presented. Nonetheless, uniqueness of the Nash equilibrium for general topologies is established under various assumptions. Also with Sun Microsystems, Mountain View, CA 1 1 Introduction Traditional computer networks were designed with a single administrative domain in mind. That is, the network is designed and operated as a single entity with a single control objective. A single control object...
Reputationbased framework for high integrity sensor networks
 In SASN ’04: Proceedings of the 2nd ACM workshop on Security of ad hoc and sensor networks
, 2004
"... The traditional approach of providing network security has been to borrow tools from cryptography and authentication. However, we argue that the conventional view of security based on cryptography alone is not sufficient for the unique characteristics and novel misbehaviors encountered in sensor net ..."
Abstract

Cited by 150 (6 self)
 Add to MetaCart
The traditional approach of providing network security has been to borrow tools from cryptography and authentication. However, we argue that the conventional view of security based on cryptography alone is not sufficient for the unique characteristics and novel misbehaviors encountered in sensor networks. Fundamental to this is the observation that cryptography cannot prevent malicious or nonmalicious insertion of data from internal adversaries or faulty nodes. We believe that in general tools from different domains such as economics, statistics and data analysis will have to be combined with cryptography for the development of trustworthy sensor networks. Following this approach, we propose a reputationbased framework for sensor networks where nodes maintain reputation for other nodes and use it to evaluate their trustworthiness. We will show that this framework provides a scalable, diverse and a generalized approach for countering all types of misbehavior resulting from malicious and faulty nodes. We are currently developing a system within this framework where we employ a Bayesian formulation, specifically a beta reputation system, for reputation representation, updates and integration. We will explain the reasoning behind our design choices, analyzing their pros & cons. We conclude the paper by verifying the efficacy of this system through some preliminary simulation results.
Keynesian Coordination Games, Strategic Uncertainty, and Coordination Failure," unpublished manuscript
, 1987
"... Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at ..."
Abstract

Cited by 130 (7 self)
 Add to MetaCart
Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at
Controllers for Reachability Specifications for Hybrid Systems
 Automatica
, 1999
"... The problem of systematically synthesizing hybrid controllers which satisfy multiple control objectives is considered. We present a technique, based on the principles of optimal control, for determining the class of least restrictive controllers that satisfies the most important objective (which we ..."
Abstract

Cited by 117 (37 self)
 Add to MetaCart
The problem of systematically synthesizing hybrid controllers which satisfy multiple control objectives is considered. We present a technique, based on the principles of optimal control, for determining the class of least restrictive controllers that satisfies the most important objective (which we refer to as safety). The system performance with respect to lower priority objectives (which we refer to as efficiency) can then be optimized within this class. We motivate our approach by showing how the proposed synthesis technique simplifies to well known results from supervisory control and pursuit evasion games when restricted to purely discrete and purely continuous systems respectively. We then illustrate the application of this technique to two examples, one hybrid (the steam boiler benchmark problem), and one primarily continuous (a flight vehicle management system with discrete flight modes). 1 Introduction Hybrid systems, or systems that involve the interaction of discrete and co...
CDMA Uplink Power Control as a Noncooperative Game
, 2002
"... We present a gametheoretic treatment of distributed power control in CDMA wireless systems. ..."
Abstract

Cited by 113 (18 self)
 Add to MetaCart
We present a gametheoretic treatment of distributed power control in CDMA wireless systems.
Stackelberg scheduling strategies
 In Proceedings of the 33rd Annual ACM Symposium on the Theory of Computing
, 2001
"... AbstractWe study the problem of optimizing the performance of a system shared by selfish, noncooperative users. We consider the concrete setting of scheduling jobs on a set of shared machines with loaddependent latency functions specifying the length of time necessary to complete a job; we measure ..."
Abstract

Cited by 108 (6 self)
 Add to MetaCart
AbstractWe study the problem of optimizing the performance of a system shared by selfish, noncooperative users. We consider the concrete setting of scheduling jobs on a set of shared machines with loaddependent latency functions specifying the length of time necessary to complete a job; we measure system performance by the total latency of the system. Assigning jobs according to the selfish interests of individual users (who wish to minimize only the latency that their own jobs experience) typically results in suboptimal system performance. However, in many systems of this type there is a mixture of "selfishly controlled " and "centrally controlled " jobs; as the assignment of centrally controlled jobs will influence the subsequent actions by selfish users, we aspire to contain the degradation in system performance due to selfish behavior by scheduling the centrally controlled jobs in the best possible way. We formulate this goal as an optimization problem via Stackelberg games, games in which one player acts a leader (here, the centralized authority interested in optimizing system performance) and the rest as followers (the selfish users). The problem is then to compute a strategy for the leader (a Stackelberg strategy) that induces the followers to react in a way that (at least approximately) minimizes the total latency in the system. In this paper, we prove that it is NPhard to compute the optimal Stackelberg strategy and present simple strategies with provable performance guarantees. More precisely, we give a simple algorithm that computes a strategy inducing a job assignment with total latency no more than a constant times that of the optimal assignment of all of the jobs; in the absence of centrally controlled jobs and a Stackelberg strategy, no result of this type is possible. We also prove stronger performance guarantees in the special case where every machine latency function is linear in the machine load.