Results 1  10
of
49
Robust Uncertainty Principles: Exact Signal Reconstruction From Highly Incomplete Frequency Information
, 2006
"... This paper considers the model problem of reconstructing an object from incomplete frequency samples. Consider a discretetime signal and a randomly chosen set of frequencies. Is it possible to reconstruct from the partial knowledge of its Fourier coefficients on the set? A typical result of this pa ..."
Abstract

Cited by 1298 (42 self)
 Add to MetaCart
This paper considers the model problem of reconstructing an object from incomplete frequency samples. Consider a discretetime signal and a randomly chosen set of frequencies. Is it possible to reconstruct from the partial knowledge of its Fourier coefficients on the set? A typical result of this paper is as follows. Suppose that is a superposition of spikes @ Aa @ A @ A obeying @�� � A I for some constant H. We do not know the locations of the spikes nor their amplitudes. Then with probability at least I @ A, can be reconstructed exactly as the solution to the I minimization problem I aH @ A s.t. ” @ Aa ” @ A for all
Near Optimal Signal Recovery From Random Projections: Universal Encoding Strategies?
, 2004
"... Suppose we are given a vector f in RN. How many linear measurements do we need to make about f to be able to recover f to within precision ɛ in the Euclidean (ℓ2) metric? Or more exactly, suppose we are interested in a class F of such objects— discrete digital signals, images, etc; how many linear m ..."
Abstract

Cited by 832 (17 self)
 Add to MetaCart
Suppose we are given a vector f in RN. How many linear measurements do we need to make about f to be able to recover f to within precision ɛ in the Euclidean (ℓ2) metric? Or more exactly, suppose we are interested in a class F of such objects— discrete digital signals, images, etc; how many linear measurements do we need to recover objects from this class to within accuracy ɛ? This paper shows that if the objects of interest are sparse or compressible in the sense that the reordered entries of a signal f ∈ F decay like a powerlaw (or if the coefficient sequence of f in a fixed basis decays like a powerlaw), then it is possible to reconstruct f to within very high accuracy from a small number of random measurements. typical result is as follows: we rearrange the entries of f (or its coefficients in a fixed basis) in decreasing order of magnitude f  (1) ≥ f  (2) ≥... ≥ f  (N), and define the weakℓp ball as the class F of those elements whose entries obey the power decay law f  (n) ≤ C · n −1/p. We take measurements 〈f, Xk〉, k = 1,..., K, where the Xk are Ndimensional Gaussian
Just Relax: Convex Programming Methods for Identifying Sparse Signals in Noise
, 2006
"... This paper studies a difficult and fundamental problem that arises throughout electrical engineering, applied mathematics, and statistics. Suppose that one forms a short linear combination of elementary signals drawn from a large, fixed collection. Given an observation of the linear combination that ..."
Abstract

Cited by 300 (1 self)
 Add to MetaCart
This paper studies a difficult and fundamental problem that arises throughout electrical engineering, applied mathematics, and statistics. Suppose that one forms a short linear combination of elementary signals drawn from a large, fixed collection. Given an observation of the linear combination that has been contaminated with additive noise, the goal is to identify which elementary signals participated and to approximate their coefficients. Although many algorithms have been proposed, there is little theory which guarantees that these algorithms can accurately and efficiently solve the problem. This paper studies a method called convex relaxation, which attempts to recover the ideal sparse signal by solving a convex program. This approach is powerful because the optimization can be completed in polynomial time with standard scientific software. The paper provides general conditions which ensure that convex relaxation succeeds. As evidence of the broad impact of these results, the paper describes how convex relaxation can be used for several concrete signal recovery problems. It also describes applications to channel coding, linear regression, and numerical analysis.
From Sparse Solutions of Systems of Equations to Sparse Modeling of Signals and Images
, 2007
"... A fullrank matrix A ∈ IR n×m with n < m generates an underdetermined system of linear equations Ax = b having infinitely many solutions. Suppose we seek the sparsest solution, i.e., the one with the fewest nonzero entries: can it ever be unique? If so, when? As optimization of sparsity is combinato ..."
Abstract

Cited by 202 (31 self)
 Add to MetaCart
A fullrank matrix A ∈ IR n×m with n < m generates an underdetermined system of linear equations Ax = b having infinitely many solutions. Suppose we seek the sparsest solution, i.e., the one with the fewest nonzero entries: can it ever be unique? If so, when? As optimization of sparsity is combinatorial in nature, are there efficient methods for finding the sparsest solution? These questions have been answered positively and constructively in recent years, exposing a wide variety of surprising phenomena; in particular, the existence of easilyverifiable conditions under which optimallysparse solutions can be found by concrete, effective computational methods. Such theoretical results inspire a bold perspective on some important practical problems in signal and image processing. Several wellknown signal and image processing problems can be cast as demanding solutions of undetermined systems of equations. Such problems have previously seemed, to many, intractable. There is considerable evidence that these problems often have sparse solutions. Hence, advances in finding sparse solutions to underdetermined systems energizes research on such signal and image processing problems – to striking effect. In this paper we review the theoretical results on sparse solutions of linear systems, empirical
Just relax: Convex programming methods for subset selection and sparse approximation
, 2004
"... Abstract. Subset selection and sparse approximation problems request a good approximation of an input signal using a linear combination of elementary signals, yet they stipulate that the approximation may only involve a few of the elementary signals. This class of problems arises throughout electric ..."
Abstract

Cited by 90 (4 self)
 Add to MetaCart
Abstract. Subset selection and sparse approximation problems request a good approximation of an input signal using a linear combination of elementary signals, yet they stipulate that the approximation may only involve a few of the elementary signals. This class of problems arises throughout electrical engineering, applied mathematics and statistics, but small theoretical progress has been made over the last fifty years. Subset selection and sparse approximation both admit natural convex relaxations, but the literature contains few results on the behavior of these relaxations for general input signals. This report demonstrates that the solution of the convex program frequently coincides with the solution of the original approximation problem. The proofs depend essentially on geometric properties of the ensemble of elementary signals. The results are powerful because sparse approximation problems are combinatorial, while convex programs can be solved in polynomial time with standard software. Comparable new results for a greedy algorithm, Orthogonal Matching Pursuit, are also stated. This report should have a major practical impact because the theory applies immediately to many realworld signal processing problems. 1.
Enhancing Sparsity by Reweighted ℓ1 Minimization
, 2007
"... It is now well understood that (1) it is possible to reconstruct sparse signals exactly from what appear to be highly incomplete sets of linear measurements and (2) that this can be done by constrained ℓ1 minimization. In this paper, we study a novel method for sparse signal recovery that in many si ..."
Abstract

Cited by 76 (4 self)
 Add to MetaCart
It is now well understood that (1) it is possible to reconstruct sparse signals exactly from what appear to be highly incomplete sets of linear measurements and (2) that this can be done by constrained ℓ1 minimization. In this paper, we study a novel method for sparse signal recovery that in many situations outperforms ℓ1 minimization in the sense that substantially fewer measurements are needed for exact recovery. The algorithm consists of solving a sequence of weighted ℓ1minimization problems where the weights used for the next iteration are computed from the value of the current solution. We present a series of experiments demonstrating the remarkable performance and broad applicability of this algorithm in the areas of sparse signal recovery, statistical estimation, error correction and image processing. Interestingly, superior gains are also achieved when our method is applied to recover signals with assumed nearsparsity in overcomplete representations—not by reweighting the ℓ1 norm of the coefficient sequence as is common, but by reweighting the ℓ1 norm of the transformed object. An immediate consequence is the possibility of highly efficient data acquisition protocols by improving on a technique known as compressed sensing.
Nearideal model selection by ℓ1 minimization
, 2008
"... We consider the fundamental problem of estimating the mean of a vector y = Xβ + z, where X is an n × p design matrix in which one can have far more variables than observations and z is a stochastic error term—the socalled ‘p> n ’ setup. When β is sparse, or more generally, when there is a sparse su ..."
Abstract

Cited by 46 (3 self)
 Add to MetaCart
We consider the fundamental problem of estimating the mean of a vector y = Xβ + z, where X is an n × p design matrix in which one can have far more variables than observations and z is a stochastic error term—the socalled ‘p> n ’ setup. When β is sparse, or more generally, when there is a sparse subset of covariates providing a close approximation to the unknown mean vector, we ask whether or not it is possible to accurately estimate Xβ using a computationally tractable algorithm. We show that in a surprisingly wide range of situations, the lasso happens to nearly select the best subset of variables. Quantitatively speaking, we prove that solving a simple quadratic program achieves a squared error within a logarithmic factor of the ideal mean squared error one would achieve with an oracle supplying perfect information about which variables should be included in the model and which variables should not. Interestingly, our results describe the average performance of the lasso; that is, the performance one can expect in an vast majority of cases where Xβ is a sparse or nearly sparse superposition of variables, but not in all cases. Our results are nonasymptotic and widely applicable since they simply require that pairs of predictor variables are not too collinear.
Enhacing sparsity by reweighted ℓ1 minimization
 Journal of Fourier Analysis and Applications
, 2008
"... It is now well understood that (1) it is possible to reconstruct sparse signals exactly from what appear to be highly incomplete sets of linear measurements and (2) that this can be done by constrained ℓ1 minimization. In this paper, we study a novel method for sparse signal recovery that in many si ..."
Abstract

Cited by 34 (1 self)
 Add to MetaCart
It is now well understood that (1) it is possible to reconstruct sparse signals exactly from what appear to be highly incomplete sets of linear measurements and (2) that this can be done by constrained ℓ1 minimization. In this paper, we study a novel method for sparse signal recovery that in many situations outperforms ℓ1 minimization in the sense that substantially fewer measurements are needed for exact recovery. The algorithm consists of solving a sequence of weighted ℓ1minimization problems where the weights used for the next iteration are computed from the value of the current solution. We present a series of experiments demonstrating the remarkable performance and broad applicability of this algorithm in the areas of sparse signal recovery, statistical estimation, error correction and image processing. Interestingly, superior gains are also achieved when our method is applied to recover signals with assumed nearsparsity in overcomplete representations—not by reweighting the ℓ1 norm of the coefficient sequence as is common, but by reweighting the ℓ1 norm of the transformed object. An immediate consequence is the possibility of highly efficient data acquisition protocols by improving on a technique known as compressed sensing.
Compressive Sensing
, 2010
"... Compressive sensing is a new type of sampling theory, which predicts that sparse signals and images can be reconstructed from what was previously believed to be incomplete information. As a main feature, efficient algorithms such as ℓ1minimization can be used for recovery. The theory has many poten ..."
Abstract

Cited by 24 (8 self)
 Add to MetaCart
Compressive sensing is a new type of sampling theory, which predicts that sparse signals and images can be reconstructed from what was previously believed to be incomplete information. As a main feature, efficient algorithms such as ℓ1minimization can be used for recovery. The theory has many potential applications in signal processing and imaging. This chapter gives an introduction and overview on both theoretical and numerical aspects of compressive sensing.
A SELECTIVE OVERVIEW OF VARIABLE SELECTION IN HIGH DIMENSIONAL FEATURE SPACE
, 2010
"... High dimensional statistical problems arise from diverse fields of scientific research and technological development. Variable selection plays a pivotal role in contemporary statistical learning and scientific discoveries. The traditional idea of best subset selection methods, which can be regarded ..."
Abstract

Cited by 23 (4 self)
 Add to MetaCart
High dimensional statistical problems arise from diverse fields of scientific research and technological development. Variable selection plays a pivotal role in contemporary statistical learning and scientific discoveries. The traditional idea of best subset selection methods, which can be regarded as a specific form of penalized likelihood, is computationally too expensive for many modern statistical applications. Other forms of penalized likelihood methods have been successfully developed over the last decade to cope with high dimensionality. They have been widely applied for simultaneously selecting important variables and estimating their effects in high dimensional statistical inference. In this article, we present a brief account of the recent developments of theory, methods, and implementations for high dimensional variable selection. What limits of the dimensionality such methods can handle, what the role of penalty functions is, and what the statistical properties are rapidly drive the advances of the field. The properties of nonconcave penalized likelihood and its roles in high dimensional statistical modeling are emphasized. We also review some recent advances in ultrahigh dimensional variable selection, with emphasis on independence screening and twoscale methods.