Results 1 
5 of
5
Instances of computational effects: an algebraic perspective
"... Abstract—We investigate the connections between computational effects, algebraic theories, and monads on functor categories. We develop a syntactic framework with variable binding that allows us to describe equations between programs while taking into account the idea that there may be different ins ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
(Show Context)
Abstract—We investigate the connections between computational effects, algebraic theories, and monads on functor categories. We develop a syntactic framework with variable binding that allows us to describe equations between programs while taking into account the idea that there may be different instances of a particular computational effect. We use our framework to give a general account of several notions of computation that had previously been analyzed in terms of monads on presheaf categories: the analysis of local store by Plotkin and Power; the analysis of restriction by Pitts; and the analysis of the pi calculus by Stark. I.
doi:10.1093/comjnl/bxh000 Events, Causality and Symmetry
"... The article discusses causal models, such as Petri nets and event structures, how they have been rediscovered in a wide variety of recent applications, and why they are fundamental to computer science. A discussion of their present limitations leads to their extension with symmetry. The consequences ..."
Abstract
 Add to MetaCart
(Show Context)
The article discusses causal models, such as Petri nets and event structures, how they have been rediscovered in a wide variety of recent applications, and why they are fundamental to computer science. A discussion of their present limitations leads to their extension with symmetry. The consequences, actual and potential, are discussed.
Universal Properties of Impure Programming Languages
"... We investigate impure, callbyvalue programming languages. Our first language only has variables and letbinding. Its equational theory is a variant of Lambek’s theory of multicategories that omits the commutativity axiom. We demonstrate that type constructions for impure languages — products, sums ..."
Abstract
 Add to MetaCart
(Show Context)
We investigate impure, callbyvalue programming languages. Our first language only has variables and letbinding. Its equational theory is a variant of Lambek’s theory of multicategories that omits the commutativity axiom. We demonstrate that type constructions for impure languages — products, sums and functions — can be characterized by universal properties in the setting of ‘premulticategories’, multicategories where the commutativity law may fail. This leads us to new, universal characterizations of two earlier equational theories of impure programming languages: the premonoidal categories of Power and Robinson, and the monadbased models of Moggi. Our analysis thus puts these earlier abstract ideas on a canonical foundation, bringing them to a new, syntactic level. F.3.2 [Semantics of Pro
An algebraic presentation of predicate logic (extended abstract)
"... Abstract. We present an algebraic theory for a fragment of predicate logic. The fragment has disjunction, existential quantification and equality. It is not an algebraic theory in the classical sense, but rather within a new framework that we call ‘parameterized algebraic theories’. We demonstrate t ..."
Abstract
 Add to MetaCart
Abstract. We present an algebraic theory for a fragment of predicate logic. The fragment has disjunction, existential quantification and equality. It is not an algebraic theory in the classical sense, but rather within a new framework that we call ‘parameterized algebraic theories’. We demonstrate the relevance of this algebraic presentation to computer science by identifying a programming language in which every type carries a model of the algebraic theory. The result is a simple functional logic programming language. We provide a syntaxfree representation theorem which places terms in bijection with sieves, a concept from category theory. We study presentationinvariance for general parameterized algebraic theories by providing a theory of clones. We show that parameterized algebraic theories characterize a class of enriched monads. 1