Results 1  10
of
92
Supervised Random Walks: Predicting and Recommending Links in Social Networks
"... Predicting the occurrence of links is a fundamental problem in networks. In the link prediction problem we are given a snapshot of a network and would like to infer which interactions among existing members are likely to occur in the near future or which existing interactions are we missing. Althoug ..."
Abstract

Cited by 56 (0 self)
 Add to MetaCart
Predicting the occurrence of links is a fundamental problem in networks. In the link prediction problem we are given a snapshot of a network and would like to infer which interactions among existing members are likely to occur in the near future or which existing interactions are we missing. Although this problem has been extensively studied, the challenge of how to effectively combine the information from the network structure with rich node and edge attribute data remains largely open. We develop an algorithm based on Supervised Random Walks that naturally combines the information from the network structure with node and edge level attributes. We achieve this by using these attributes to guide a random walk on the graph. We formulate a supervised learning task where the goal is to learn a function that assigns strengths to edges in the network such that a random walker is more likely to visit the nodes to which new links will be created in the future. We develop an efficient training algorithm to directly learn the edge strength estimation function. Our experiments on the Facebook social graph and large collaboration networks show that our approach outperforms stateoftheart unsupervised approaches as well as approaches that are based on feature extraction.
Rankingbased clustering of heterogeneous information networks with star network schema
 In: Proc. 2009 ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining (KDD 2009
, 2009
"... A heterogeneous information network is an information network composed of multiple types of objects. Clustering on such a network may lead to better understanding of both hidden structures of the network and the individual role played by every object in each cluster. However, although clustering on ..."
Abstract

Cited by 44 (24 self)
 Add to MetaCart
A heterogeneous information network is an information network composed of multiple types of objects. Clustering on such a network may lead to better understanding of both hidden structures of the network and the individual role played by every object in each cluster. However, although clustering on homogeneous networks has been studied over decades, clustering on heterogeneous networks has not been addressed until recently. A recent study proposed a new algorithm, RankClus, for clustering on bityped heterogeneous networks. However, a realworld network may consist of more than two types, and the interactions among multityped objects play a key role at disclosing the rich semantics that a network carries. In this paper, we study clustering of multityped heterogeneous networks with a star network schema and propose a novel algorithm, NetClus, that utilizes links across multityped objects to generate highquality netclusters. An iterative enhancement method is developed that leads to effective rankingbased clustering in such heterogeneous networks. Our experiments on DBLP data show that NetClus generates more accurate clustering results than the baseline topic model algorithm PLSA and the recently proposed algorithm, RankClus. Further, NetClus generates informative clusters, presenting good ranking and cluster membership information for each attribute object in each netcluster.
Graph Clustering Based on Structural/Attribute Similarities
"... The goal of graph clustering is to partition vertices in a large graph into different clusters based on various criteria such as vertex connectivity or neighborhood similarity. Graph clustering techniques are very useful for detecting densely connected groups in a large graph. Many existing graph cl ..."
Abstract

Cited by 42 (2 self)
 Add to MetaCart
The goal of graph clustering is to partition vertices in a large graph into different clusters based on various criteria such as vertex connectivity or neighborhood similarity. Graph clustering techniques are very useful for detecting densely connected groups in a large graph. Many existing graph clustering methods mainly focus on the topological structure for clustering, but largely ignore the vertex properties which are often heterogenous. In this paper, we propose a novel graph clustering algorithm, SACluster, based on both structural and attribute similarities through a unified distance measure. Our method partitions a large graph associated with attributes into k clusters so that each cluster contains a densely connected subgraph with homogeneous attribute values. An effective method is proposed to automatically learn the degree of contributions of structural similarity and attribute similarity. Theoretical analysis is provided to show that SACluster is converging. Extensive experimental results demonstrate the effectiveness of SACluster through comparison with the stateoftheart graph clustering and summarization methods. 1.
On Social Networks and Collaborative Recommendation
"... Social network systems, like last.fm, play a significant role in Web 2.0, containing large amounts of multimediaenriched data that are enhanced both by explicit userprovided annotations and implicit aggregated feedback describing the personal preferences of each user. It is also a common tendency ..."
Abstract

Cited by 38 (0 self)
 Add to MetaCart
Social network systems, like last.fm, play a significant role in Web 2.0, containing large amounts of multimediaenriched data that are enhanced both by explicit userprovided annotations and implicit aggregated feedback describing the personal preferences of each user. It is also a common tendency for these systems to encourage the creation of virtual networks among their users by allowing them to establish bonds of friendship and thus provide a novel and direct medium for the exchange of data. We investigate the role of these additional relationships in developing a track recommendation system. Taking into account both the social annotation and friendships inherent in the social graph established among users, items and tags, we created a collaborative recommendation system that effectively adapts to the personal information needs of each user. We adopt the generic framework of Random Walk with Restarts in order to provide with a more natural and efficient way to represent social networks. In this work we collected a representative enough portion of the music social network last.fm, capturing explicitly expressed bonds of friendship of the user as well as social tags. We performed a series of comparison experiments between the Random Walk with Restarts model and a userbased collaborative filtering method using the Pearson Correlation similarity. The results show that the graph model system benefits from the additional information embedded in social knowledge. In addition, the graph model outperforms the standard collaborative filtering method.
Fast besteffort pattern matching in large attributed graphs
 In KDD
, 2007
"... We focus on large graphs where nodes have attributes, such as a social network where the nodes are labelled with each person’s job title. In such a setting, we want to find subgraphs that match a user query pattern. For example, a ‘star ’ query would be, “find a CEO who has strong interactions with ..."
Abstract

Cited by 25 (12 self)
 Add to MetaCart
We focus on large graphs where nodes have attributes, such as a social network where the nodes are labelled with each person’s job title. In such a setting, we want to find subgraphs that match a user query pattern. For example, a ‘star ’ query would be, “find a CEO who has strong interactions with a Manager, a Lawyer, and an Accountant, or another structure as close to that as possible”. Similarly, a ‘loop ’ query could help spot a money laundering ring. Traditional SQLbased methods, as well as more recent graph indexing methods, will return no answer when an exact match does not exist. Our method can find exact, as well as nearmatches, and it will present them to the user in our proposed ‘goodness ’ order. For example, our method tolerates indirect paths between, say, the ‘CEO ’ and the ‘Accountant ’ of the above sample query, when direct paths do not exist. Its second feature is scalability. In general, if the query has nq nodes and the data graph has n nodes, the problem needs polynomial time complexity O(n nq), which is prohibitive. Our GRay (“Graph XRay”) method finds highquality subgraphs in time linear on the size of the data graph. Experimental results on the DLBP authorpublication graph (with 356K nodes and 1.9M edges) illustrate both the effectiveness and scalability of our approach. The results agree with our intuition, and the speed is excellent. It takes 4 seconds on average for a 4node query on the DBLP graph.
Pathsim: Meta pathbased topk similarity search in heterogeneous information networks
 In VLDB’ 11
, 2011
"... Similarity search is a primitive operation in database and Web search engines. With the advent of largescale heterogeneous information networks that consist of multityped, interconnected objects, such as the bibliographic networks and social media networks, it is important to study similarity sear ..."
Abstract

Cited by 24 (16 self)
 Add to MetaCart
Similarity search is a primitive operation in database and Web search engines. With the advent of largescale heterogeneous information networks that consist of multityped, interconnected objects, such as the bibliographic networks and social media networks, it is important to study similarity search in such networks. Intuitively, two objects are similar if they are linked by many paths in the network. However, most existing similarity measures are defined for homogeneous networks. Different semantic meanings behind paths are not taken into consideration. Thus they cannot be directly applied to heterogeneous networks. In this paper, we study similarity search that is defined among the same type of objects in heterogeneous networks. Moreover, by considering different linkage paths in a network, one could derive various similarity semantics. Therefore, we introduce the concept
An experimental investigation of graph kernels on a collaborative recommendation task
 Proceedings of the 6th International Conference on Data Mining (ICDM 2006
, 2006
"... This paper presents a survey as well as a systematic empirical comparison of seven graph kernels and two related similarity matrices (simply referred to as graph kernels), namely the exponential diffusion kernel, the Laplacian exponential diffusion kernel, the von Neumann diffusion kernel, the regul ..."
Abstract

Cited by 19 (6 self)
 Add to MetaCart
This paper presents a survey as well as a systematic empirical comparison of seven graph kernels and two related similarity matrices (simply referred to as graph kernels), namely the exponential diffusion kernel, the Laplacian exponential diffusion kernel, the von Neumann diffusion kernel, the regularized Laplacian kernel, the commutetime kernel, the randomwalkwithrestart similarity matrix, and finally, three graph kernels introduced in this paper: the regularized commutetime kernel, the Markov diffusion kernel, and the crossentropy diffusion matrix. The kernelonagraph approach is simple and intuitive. It is illustrated by applying the nine graph kernels to a collaborativerecommendation task and to a semisupervised classification task, both on several databases. The graph methods compute proximity measures between nodes that help study the structure of the graph. Our comparisons suggest that the regularized commutetime and the Markov diffusion kernels perform best, closely followed by the regularized Laplacian kernel. 1
Iterative Set Expansion of Named Entities using the Web
"... Set expansion refers to expanding a partial set of “seed” objects into a more complete set. One system that does set expansion is SEAL (Set Expander for Any Language), which expands entities automatically by utilizing resources from the Web in a language independent fashion. In a previous study, SEA ..."
Abstract

Cited by 18 (5 self)
 Add to MetaCart
Set expansion refers to expanding a partial set of “seed” objects into a more complete set. One system that does set expansion is SEAL (Set Expander for Any Language), which expands entities automatically by utilizing resources from the Web in a language independent fashion. In a previous study, SEAL showed good set expansion performance using three seed entities; however, when given a larger set of seeds (e.g., ten), SEAL’s expansion method performs poorly. In this paper, we present Iterative SEAL (iSEAL), which allows a user to provide many seeds. Briefly, iSEAL makes several calls to SEAL, each call using a small number of seeds. We also show that iSEAL can be used in a “bootstrapping” manner, where each call to SEAL uses a mixture of userprovided and selfgenerated seeds. We show that the bootstrapping version of iSEAL obtains better results than SEAL using fewer userprovided seeds. In addition, we compare the performance of various ranking algorithms used in iSEAL, and show that the choice of ranking method has a small effect on performance when all seeds are userprovided, but a large effect when iSEAL is bootstrapped. In particular, we show that Random Walk with Restart is nearly as good as Bayesian Sets with userprovided seeds, and performs best with bootstrapped seeds. 1.
On the Vulnerability of Large Graphs
"... Given a large graph, like a computer network, which k nodes should we immunize (or monitor, or remove), to make it as robust as possible against a computer virus attack? We need (a) a measure of the ‘Vulnerability ’ of a given network, (b) a measure of the ‘Shieldvalue ’ of a specific set of k node ..."
Abstract

Cited by 14 (10 self)
 Add to MetaCart
Given a large graph, like a computer network, which k nodes should we immunize (or monitor, or remove), to make it as robust as possible against a computer virus attack? We need (a) a measure of the ‘Vulnerability ’ of a given network, (b) a measure of the ‘Shieldvalue ’ of a specific set of k nodes and (c) a fast algorithm to choose the best such k nodes. We answer all these three questions: we give the justification behind our choices, we show that they agree with intuition as well as recent results in immunology. Moreover, we propose NetShield, a fast and scalable algorithm. Finally, we give experiments on large real graphs, where NetShield achieves tremendous speed savings exceeding 7 orders of magnitude, against straightforward competitors. 1