Results 1 
3 of
3
Pegasos: Primal Estimated subgradient solver for SVM
"... We describe and analyze a simple and effective stochastic subgradient descent algorithm for solving the optimization problem cast by Support Vector Machines (SVM). We prove that the number of iterations required to obtain a solution of accuracy ɛ is Õ(1/ɛ), where each iteration operates on a singl ..."
Abstract

Cited by 279 (15 self)
 Add to MetaCart
We describe and analyze a simple and effective stochastic subgradient descent algorithm for solving the optimization problem cast by Support Vector Machines (SVM). We prove that the number of iterations required to obtain a solution of accuracy ɛ is Õ(1/ɛ), where each iteration operates on a single training example. In contrast, previous analyses of stochastic gradient descent methods for SVMs require Ω(1/ɛ2) iterations. As in previously devised SVM solvers, the number of iterations also scales linearly with 1/λ, where λ is the regularization parameter of SVM. For a linear kernel, the total runtime of our method is Õ(d/(λɛ)), where d is a bound on the number of nonzero features in each example. Since the runtime does not depend directly on the size of the training set, the resulting algorithm is especially suited for learning from large datasets. Our approach also extends to nonlinear kernels while working solely on the primal objective function, though in this case the runtime does depend linearly on the training set size. Our algorithm is particularly well suited for large text classification problems, where we demonstrate an orderofmagnitude speedup over previous SVM learning methods.
Exponentiated gradient algorithms for conditional random fields and maxmargin Markov networks
, 2008
"... Loglinear and maximummargin models are two commonlyused methods in supervised machine learning, and are frequently used in structured prediction problems. Efficient learning of parameters in these models is therefore an important problem, and becomes a key factor when learning from very large dat ..."
Abstract

Cited by 59 (1 self)
 Add to MetaCart
Loglinear and maximummargin models are two commonlyused methods in supervised machine learning, and are frequently used in structured prediction problems. Efficient learning of parameters in these models is therefore an important problem, and becomes a key factor when learning from very large data sets. This paper describes exponentiated gradient (EG) algorithms for training such models, where EG updates are applied to the convex dual of either the loglinear or maxmargin objective function; the dual in both the loglinear and maxmargin cases corresponds to minimizing a convex function with simplex constraints. We study both batch and online variants of the algorithm, and provide rates of convergence for both cases. In the maxmargin case, O ( 1 ε) EG updates are required to reach a given accuracy ε in the dual; in contrast, for loglinear models only O(log (1/ε)) updates are required. For both the maxmargin and loglinear cases, our bounds suggest that the online EG algorithm requires a factor of n less computation to reach a desired accuracy than the batch EG algorithm, where n is the number of training examples. Our experiments confirm that the online algorithms are much faster than the batch algorithms in practice. We describe how the EG updates factor in a convenient way for structured prediction problems, allowing the algorithms to be
Neighborhood Property based Pattern Selection For Support Vector Machines
, 2006
"... Support Vector Machine (SVM) has been spotlighted in the machine learning community thanks to its theoretical soundness and practical performance. When applied to a large data set, however, it requires a large memory and long time for training. To cope with the practical difficulty, we propose a pat ..."
Abstract

Cited by 5 (0 self)
 Add to MetaCart
Support Vector Machine (SVM) has been spotlighted in the machine learning community thanks to its theoretical soundness and practical performance. When applied to a large data set, however, it requires a large memory and long time for training. To cope with the practical difficulty, we propose a pattern selection algorithm based on neighborhood properties. The idea is to select only the patterns that are likely to be located near the decision boundary. Those patterns are expected to be more informative than the randomly selected patterns. The experimental results provide promising evidence that it is possible to successfully employ the proposed algorithm ahead of SVM training. 1 1