Results 1  10
of
123
Voronoi diagrams  a survey of a fundamental geometric data structure
 ACM COMPUTING SURVEYS
, 1991
"... This paper presents a survey of the Voronoi diagram, one of the most fundamental data structures in computational geometry. It demonstrates the importance and usefulness of the Voronoi diagram in a wide variety of fields inside and outside computer science and surveys the history of its development. ..."
Abstract

Cited by 701 (5 self)
 Add to MetaCart
This paper presents a survey of the Voronoi diagram, one of the most fundamental data structures in computational geometry. It demonstrates the importance and usefulness of the Voronoi diagram in a wide variety of fields inside and outside computer science and surveys the history of its development. The paper puts particular emphasis on the unified exposition of its mathematical and algorithmic properties. Finally, the paper provides the first comprehensive bibliography on Voronoi diagrams and related structures.
Primitives for the manipulation of general subdivisions and the computations of Voronoi diagrams
 ACM Tmns. Graph
, 1985
"... The following problem is discussed: Given n points in the plane (the sites) and an arbitrary query point 4, find the site that is closest to q. This problem can be solved by constructing the Voronoi diagram of the given sites and then locating the query point in one of its regions. Two algorithms ar ..."
Abstract

Cited by 517 (10 self)
 Add to MetaCart
(Show Context)
The following problem is discussed: Given n points in the plane (the sites) and an arbitrary query point 4, find the site that is closest to q. This problem can be solved by constructing the Voronoi diagram of the given sites and then locating the query point in one of its regions. Two algorithms are given, one that constructs the Voronoi diagram in O(n log n) time, and another that inserts a new site in O(n) time. Both are based on the use of the Voronoi dual, or Delaunay triangulation, and are simple enough to be of practical value. The simplicity of both algorithms can be attributed to the separation of the geometrical and topological aspects of the problem and to the use of two simple but powerful primitives, a geometric predicate and an operator for manipulating the topology of the diagram. The topology is represented by a new data structure for generalized diagrams, that is, embeddings of graphs in twodimensional manifolds. This structure represents simultaneously an embedding, its dual, and its mirror image. Furthermore, just two operators are sufficient for building and modifying arbitrary diagrams.
Applications of Random Sampling in Computational Geometry, II
 Discrete Comput. Geom
, 1995
"... We use random sampling for several new geometric algorithms. The algorithms are "Las Vegas," and their expected bounds are with respect to the random behavior of the algorithms. These algorithms follow from new general results giving sharp bounds for the use of random subsets in geometric ..."
Abstract

Cited by 432 (12 self)
 Add to MetaCart
We use random sampling for several new geometric algorithms. The algorithms are "Las Vegas," and their expected bounds are with respect to the random behavior of the algorithms. These algorithms follow from new general results giving sharp bounds for the use of random subsets in geometric algorithms. These bounds show that random subsets can be used optimally for divideandconquer, and also give bounds for a simple, general technique for building geometric structures incrementally. One new algorithm reports all the intersecting pairs of a set of line segments in the plane, and requires O(A + n log n) expected time, where A is the number of intersecting pairs reported. The algorithm requires O(n) space in the worst case. Another algorithm computes the convex hull of n points in E d in O(n log n) expected time for d = 3, and O(n bd=2c ) expected time for d ? 3. The algorithm also gives fast expected times for random input points. Another algorithm computes the diameter of a set of n...
Simulation of Simplicity: A Technique to Cope with Degenerate Cases in Geometric Algorithms
 ACM TRANS. GRAPH
, 1990
"... This paper describes a generalpurpose programming technique, called the Simulation of Simplicity, which can be used to cope with degenerate input data for geometric algorithms. It relieves the programmer from the task to provide a consistent treatment for every single special case that can occur. T ..."
Abstract

Cited by 303 (23 self)
 Add to MetaCart
(Show Context)
This paper describes a generalpurpose programming technique, called the Simulation of Simplicity, which can be used to cope with degenerate input data for geometric algorithms. It relieves the programmer from the task to provide a consistent treatment for every single special case that can occur. The programs that use the technique tend to be considerably smaller and more robust than those that do not use it. We believe that this technique will become a standard tool in writing geometric software.
Optimal search in planar subdivisions
 SIAM Journal of Computing, Voltune
, 1983
"... Abstract. A planar subdivision is any partition of the plane into (possibly unbounded) polygonal regions. The subdivision search problem is the following: given a subdivision S with n line segments and a query point P, determine which region of S contains P. We present a practical algorithm for subd ..."
Abstract

Cited by 275 (3 self)
 Add to MetaCart
(Show Context)
Abstract. A planar subdivision is any partition of the plane into (possibly unbounded) polygonal regions. The subdivision search problem is the following: given a subdivision S with n line segments and a query point P, determine which region of S contains P. We present a practical algorithm for subdivision search that achieves the same (optimal) worst case complexity bounds as the significantly more complex algorithm of Lipton and Tarjan, namely O (log n) search time with O (n) storage. Our subdivision search structure can be constructed in linear time from the subdivision representation used in many applications. Key words, computational geometry, analysis of algorithms, point location, planar graphs, hierarchical search
Mesh Generation And Optimal Triangulation
, 1992
"... We survey the computational geometry relevant to finite element mesh generation. We especially focus on optimal triangulations of geometric domains in two and threedimensions. An optimal triangulation is a partition of the domain into triangles or tetrahedra, that is best according to some cri ..."
Abstract

Cited by 206 (7 self)
 Add to MetaCart
We survey the computational geometry relevant to finite element mesh generation. We especially focus on optimal triangulations of geometric domains in two and threedimensions. An optimal triangulation is a partition of the domain into triangles or tetrahedra, that is best according to some criterion that measures the size, shape, or number of triangles. We discuss algorithms both for the optimization of triangulations on a fixed set of vertices and for the placement of new vertices (Steiner points). We briefly survey the heuristic algorithms used in some practical mesh generators.
Geometric structures for threedimensional shape representation
 ACM Trans. Graph
, 1984
"... Different geometric structures are investigated in the context of discrete surface representation. It is shown that minimal representations (i.e., polyhedra) can be provided by a surfacebased method using nearest neighbors structures or by a volumebased method using the Delaunay triangulation. Bot ..."
Abstract

Cited by 186 (5 self)
 Add to MetaCart
(Show Context)
Different geometric structures are investigated in the context of discrete surface representation. It is shown that minimal representations (i.e., polyhedra) can be provided by a surfacebased method using nearest neighbors structures or by a volumebased method using the Delaunay triangulation. Both approaches are compared with respect to various criteria, such as space requirements, computation time, constraints on the distribution of the points, facilities for further calculations, and agreement with the actual shape of the object.
Solving geometric problems with the rotating calipers
, 1983
"... Shamos [1] recently showed that the diameter of a convex nsided polygon could be computed in O(n) time using a very elegant and simple procedure which resembles rotating a set of calipers around the polygon once. In this paper we show that this simple idea can be generalized in two ways: several se ..."
Abstract

Cited by 136 (14 self)
 Add to MetaCart
(Show Context)
Shamos [1] recently showed that the diameter of a convex nsided polygon could be computed in O(n) time using a very elegant and simple procedure which resembles rotating a set of calipers around the polygon once. In this paper we show that this simple idea can be generalized in two ways: several sets of calipers can be used simultaneously on one convex polygon, or one set of calipers can be used on several convex polygons simultaneously. We then show that these generalizations allow us to obtain simple O(n) algorithms for solving a variety of problems defined on convex polygons. Such problems include (1) finding the minimumarea rectangle enclosing a polygon, (2) computing the maximum distance between two polygons, (3) performing the vectorsum of two polygons, (4) merging polygons in a convex hull finding algorithms, and (5) finding the critical support lines between two polygons. Finding the critical support lines, in turn, leads to obtaining solutions to several additional problems concerned with visibility, collision, avoidance, range fitting, linear separability, and computing the Grenander distance between sets. 1.
ExternalMemory Computational Geometry
, 1993
"... In this paper, we give new techniques for designing efficient algorithms for computational geometry problems that are too large to be solved in internal memory, and we use these techniques to develop optimal and practical algorithms for a number of important largescale problems. We discuss our algor ..."
Abstract

Cited by 131 (22 self)
 Add to MetaCart
In this paper, we give new techniques for designing efficient algorithms for computational geometry problems that are too large to be solved in internal memory, and we use these techniques to develop optimal and practical algorithms for a number of important largescale problems. We discuss our algorithms primarily in the contex't of single processor/single disk machines, a domain in which they are not only the first known optimal results but also of tremendous practical value. Our methods also produce the first known optimal algorithms for a wide range of twolevel and hierarchical muir{level memory models, including parallel models. The algorithms are optimal both in terms of I/0 cost and internal computation.
Determining the Separation of Preprocessed Polyhedra  A Unified Approach
, 1990
"... We show how (now familiar) hierarchical representations of (convex) polyhedra can be used to answer various separation queries efficiently (in a number of cases, optimally). Our emphasis is i) the uniform treatment of polyhedra separation problems, ii) the use of hierarchical representations of prim ..."
Abstract

Cited by 116 (5 self)
 Add to MetaCart
We show how (now familiar) hierarchical representations of (convex) polyhedra can be used to answer various separation queries efficiently (in a number of cases, optimally). Our emphasis is i) the uniform treatment of polyhedra separation problems, ii) the use of hierarchical representations of primitive objects to provide implicit representations of composite or transformed objects, and iii) applications to natural problems in graphics and robotics. Among the specific results is an O(log jP j 1 log jQj) algorithm for determining the sepa ration of polyhedra P and Q (which have been individually preprocessed in at most linear time).