Results 1  10
of
68
Voronoi diagrams  a survey of a fundamental geometric data structure
 ACM COMPUTING SURVEYS
, 1991
"... This paper presents a survey of the Voronoi diagram, one of the most fundamental data structures in computational geometry. It demonstrates the importance and usefulness of the Voronoi diagram in a wide variety of fields inside and outside computer science and surveys the history of its development. ..."
Abstract

Cited by 560 (5 self)
 Add to MetaCart
This paper presents a survey of the Voronoi diagram, one of the most fundamental data structures in computational geometry. It demonstrates the importance and usefulness of the Voronoi diagram in a wide variety of fields inside and outside computer science and surveys the history of its development. The paper puts particular emphasis on the unified exposition of its mathematical and algorithmic properties. Finally, the paper provides the first comprehensive bibliography on Voronoi diagrams and related structures.
Applications of Random Sampling in Computational Geometry, II
 Discrete Comput. Geom
, 1995
"... We use random sampling for several new geometric algorithms. The algorithms are "Las Vegas," and their expected bounds are with respect to the random behavior of the algorithms. These algorithms follow from new general results giving sharp bounds for the use of random subsets in geometric algorithms ..."
Abstract

Cited by 386 (12 self)
 Add to MetaCart
We use random sampling for several new geometric algorithms. The algorithms are "Las Vegas," and their expected bounds are with respect to the random behavior of the algorithms. These algorithms follow from new general results giving sharp bounds for the use of random subsets in geometric algorithms. These bounds show that random subsets can be used optimally for divideandconquer, and also give bounds for a simple, general technique for building geometric structures incrementally. One new algorithm reports all the intersecting pairs of a set of line segments in the plane, and requires O(A + n log n) expected time, where A is the number of intersecting pairs reported. The algorithm requires O(n) space in the worst case. Another algorithm computes the convex hull of n points in E d in O(n log n) expected time for d = 3, and O(n bd=2c ) expected time for d ? 3. The algorithm also gives fast expected times for random input points. Another algorithm computes the diameter of a set of n...
Simulation of Simplicity: A Technique to Cope with Degenerate Cases in Geometric Algorithms
 ACM TRANS. GRAPH
, 1990
"... This paper describes a generalpurpose programming technique, called the Simulation of Simplicity, which can be used to cope with degenerate input data for geometric algorithms. It relieves the programmer from the task to provide a consistent treatment for every single special case that can occur. T ..."
Abstract

Cited by 277 (21 self)
 Add to MetaCart
This paper describes a generalpurpose programming technique, called the Simulation of Simplicity, which can be used to cope with degenerate input data for geometric algorithms. It relieves the programmer from the task to provide a consistent treatment for every single special case that can occur. The programs that use the technique tend to be considerably smaller and more robust than those that do not use it. We believe that this technique will become a standard tool in writing geometric software.
Mesh Generation And Optimal Triangulation
, 1992
"... We survey the computational geometry relevant to finite element mesh generation. We especially focus on optimal triangulations of geometric domains in two and threedimensions. An optimal triangulation is a partition of the domain into triangles or tetrahedra, that is best according to some cri ..."
Abstract

Cited by 179 (7 self)
 Add to MetaCart
We survey the computational geometry relevant to finite element mesh generation. We especially focus on optimal triangulations of geometric domains in two and threedimensions. An optimal triangulation is a partition of the domain into triangles or tetrahedra, that is best according to some criterion that measures the size, shape, or number of triangles. We discuss algorithms both for the optimization of triangulations on a fixed set of vertices and for the placement of new vertices (Steiner points). We briefly survey the heuristic algorithms used in some practical mesh generators.
Geometric structures for threedimensional shape representation
 ACM Trans. Graph
, 1984
"... Different geometric structures are investigated in the context of discrete surface representation. It is shown that minimal representations (i.e., polyhedra) can be provided by a surfacebased method using nearest neighbors structures or by a volumebased method using the Delaunay triangulation. Bot ..."
Abstract

Cited by 165 (3 self)
 Add to MetaCart
Different geometric structures are investigated in the context of discrete surface representation. It is shown that minimal representations (i.e., polyhedra) can be provided by a surfacebased method using nearest neighbors structures or by a volumebased method using the Delaunay triangulation. Both approaches are compared with respect to various criteria, such as space requirements, computation time, constraints on the distribution of the points, facilities for further calculations, and agreement with the actual shape of the object.
ExternalMemory Computational Geometry
, 1993
"... In this paper, we give new techniques for designing efficient algorithms for computational geometry problems that are too large to be solved in internal memory, and we use these techniques to develop optimal and practical algorithms for a number of important largescale problems. We discuss our algor ..."
Abstract

Cited by 121 (20 self)
 Add to MetaCart
In this paper, we give new techniques for designing efficient algorithms for computational geometry problems that are too large to be solved in internal memory, and we use these techniques to develop optimal and practical algorithms for a number of important largescale problems. We discuss our algorithms primarily in the contex't of single processor/single disk machines, a domain in which they are not only the first known optimal results but also of tremendous practical value. Our methods also produce the first known optimal algorithms for a wide range of twolevel and hierarchical muir{level memory models, including parallel models. The algorithms are optimal both in terms of I/0 cost and internal computation.
Solving geometric problems with the rotating calipers
, 1983
"... Shamos [1] recently showed that the diameter of a convex nsided polygon could be computed in O(n) time using a very elegant and simple procedure which resembles rotating a set of calipers around the polygon once. In this paper we show that this simple idea can be generalized in two ways: several se ..."
Abstract

Cited by 111 (14 self)
 Add to MetaCart
Shamos [1] recently showed that the diameter of a convex nsided polygon could be computed in O(n) time using a very elegant and simple procedure which resembles rotating a set of calipers around the polygon once. In this paper we show that this simple idea can be generalized in two ways: several sets of calipers can be used simultaneously on one convex polygon, or one set of calipers can be used on several convex polygons simultaneously. We then show that these generalizations allow us to obtain simple O(n) algorithms for solving a variety of problems defined on convex polygons. Such problems include (1) finding the minimumarea rectangle enclosing a polygon, (2) computing the maximum distance between two polygons, (3) performing the vectorsum of two polygons, (4) merging polygons in a convex hull finding algorithms, and (5) finding the critical support lines between two polygons. Finding the critical support lines, in turn, leads to obtaining solutions to several additional problems concerned with visibility, collision, avoidance, range fitting, linear separability, and computing the Grenander distance between sets. 1.
Determining the Separation of Preprocessed Polyhedra  A Unified Approach
, 1990
"... We show how (now familiar) hierarchical representations of (convex) polyhedra can be used to answer various separation queries efficiently (in a number of cases, optimally). Our emphasis is i) the uniform treatment of polyhedra separation problems, ii) the use of hierarchical representations of prim ..."
Abstract

Cited by 105 (5 self)
 Add to MetaCart
We show how (now familiar) hierarchical representations of (convex) polyhedra can be used to answer various separation queries efficiently (in a number of cases, optimally). Our emphasis is i) the uniform treatment of polyhedra separation problems, ii) the use of hierarchical representations of primitive objects to provide implicit representations of composite or transformed objects, and iii) applications to natural problems in graphics and robotics. Among the specific results is an O(log jP j 1 log jQj) algorithm for determining the sepa ration of polyhedra P and Q (which have been individually preprocessed in at most linear time).
OutputSensitive Results on Convex Hulls, Extreme Points, and Related Problems
, 1996
"... . We use known data structures for rayshooting and linearprogramming queries to derive new outputsensitive results on convex hulls, extreme points, and related problems. We show that the f face convex hull of an npoint set P in a fixed dimension d # 2 can be constructed in O(n log f + (nf) ..."
Abstract

Cited by 64 (13 self)
 Add to MetaCart
. We use known data structures for rayshooting and linearprogramming queries to derive new outputsensitive results on convex hulls, extreme points, and related problems. We show that the f face convex hull of an npoint set P in a fixed dimension d # 2 can be constructed in O(n log f + (nf) 11/(#d/2#+1) log O(1) n) time; this is optimal if f = O(n 1/#d/2# / log K n) for some sufficiently large constant K . We also show that the h extreme points of P can be computed in O(n log O(1) h + (nh) 11/(#d/2#+1) log O(1) n) time. These results are then applied to produce an algorithm that computes the vertices of all the convex layers of P in O(n 2# ) time for any constant #<2/(#d/2# 2 + 1). Finally, we obtain improved time bounds for other problems including levels in arrangements and linear programming with few violated constraints. In all of our algorithms the input is assumed to be in general position. 1. Introduction Let P be a set of n points in ddimen...
Computing the Width of a Set
 IEEE Trans. Pattern Anal. Mach. Intell
, 1988
"... Given a set of points P = {p 1 , p 2 ,..., p n } in three dimensions, the width of P, W(P), is defined as the minimum distance between parallel planes of support of P. It is shown that W(P) can be computed in O(n log n + I) time and O(n) space, where I is the number of antipodal pairs of edges ..."
Abstract

Cited by 62 (3 self)
 Add to MetaCart
Given a set of points P = {p 1 , p 2 ,..., p n } in three dimensions, the width of P, W(P), is defined as the minimum distance between parallel planes of support of P. It is shown that W(P) can be computed in O(n log n + I) time and O(n) space, where I is the number of antipodal pairs of edges of the convex hull of P, and in the worst case I = W(n 2 ). For convex polyhedra, the time complexity becomes O(n + I). If P is a set of points in the plane, the complexity can be reduced to O(n log n). Finally, for simple polygons linear time suffices. Index Terms  Algorithms, antipodal pairs, artificial intelligence, computational geometry, convex hull, geometric complexity, geometric transforms, image processing, minimax approximating line, minimax approximating plane, pattern recognition, rotating calipers, width. 1. Introduction The width of a set of points P (or a simple polygon P) in two dimensions is the minimum distance between parallel lines of support of P (or P). In three d...