Results 1  10
of
35
Sequential Monte Carlo Samplers
, 2002
"... In this paper, we propose a general algorithm to sample sequentially from a sequence of probability distributions known up to a normalizing constant and de ned on a common space. A sequence of increasingly large arti cial joint distributions is built; each of these distributions admits a marginal ..."
Abstract

Cited by 141 (24 self)
 Add to MetaCart
In this paper, we propose a general algorithm to sample sequentially from a sequence of probability distributions known up to a normalizing constant and de ned on a common space. A sequence of increasingly large arti cial joint distributions is built; each of these distributions admits a marginal which is a distribution of interest. To sample from these distributions, we use sequential Monte Carlo methods. We show that these methods can be interpreted as interacting particle approximations of a nonlinear FeynmanKac ow in distribution space. One interpretation of the FeynmanKac ow corresponds to a nonlinear Markov kernel admitting a speci ed invariant distribution and is a natural nonlinear extension of the standard MetropolisHastings algorithm. Many theoretical results have already been established for such ows and their particle approximations. We demonstrate the use of these algorithms through simulation.
Central limit theorem for sequential monte carlo methods and its application to bayesian inference
 Ann. Statist
"... “particle filters, ” refers to a general class of iterative algorithms that performs Monte Carlo approximations of a given sequence of distributions of interest (πt). We establish in this paper a central limit theorem for the Monte Carlo estimates produced by these computational methods. This result ..."
Abstract

Cited by 58 (2 self)
 Add to MetaCart
“particle filters, ” refers to a general class of iterative algorithms that performs Monte Carlo approximations of a given sequence of distributions of interest (πt). We establish in this paper a central limit theorem for the Monte Carlo estimates produced by these computational methods. This result holds under minimal assumptions on the distributions πt, and applies in a general framework which encompasses most of the sequential Monte Carlo methods that have been considered in the literature, including the resamplemove algorithm of Gilks and Berzuini [J. R. Stat. Soc. Ser. B Stat. Methodol. 63 (2001) 127–146] and the residual resampling scheme. The corresponding asymptotic variances provide a convenient measurement of the precision of a given particle filter. We study, in particular, in some typical examples of Bayesian applications, whether and at which rate these asymptotic variances diverge in time, in order to assess the long term reliability of the considered algorithm. 1. Introduction. Sequential Monte Carlo methods form an emerging
Estimating macroeconomic models: a likelihood approach
, 2006
"... This paper shows how particle filtering facilitates likelihoodbased inference in dynamic macroeconomic models. The economies can be nonlinear and/or nonnormal. We describe how to use the output from the particle filter to estimate the structural parameters of the model, those characterizing prefer ..."
Abstract

Cited by 57 (21 self)
 Add to MetaCart
This paper shows how particle filtering facilitates likelihoodbased inference in dynamic macroeconomic models. The economies can be nonlinear and/or nonnormal. We describe how to use the output from the particle filter to estimate the structural parameters of the model, those characterizing preferences and technology, and to compare different economies. Both tasks can be implemented from either a classical or a Bayesian perspective. We illustrate the technique by estimating a business cycle model with investmentspecific technological change, preference shocks, and stochastic volatility.
Risk Matters: The Real Effects of Volatility Shocks
, 2009
"... This paper shows how changes in the volatility of the real interest rate at which small open emerging economies borrow have a quantitatively important effect on real variables like output, consumption, investment, and hours worked. To motivate our investigation, we document the strong evidence of ti ..."
Abstract

Cited by 26 (6 self)
 Add to MetaCart
This paper shows how changes in the volatility of the real interest rate at which small open emerging economies borrow have a quantitatively important effect on real variables like output, consumption, investment, and hours worked. To motivate our investigation, we document the strong evidence of timevarying volatility in the real interest rates faced by a sample of four emerging small open
Efficient block sampling strategies for sequential Monte Carlo
 Journal of Computational and Graphical Statistics
, 2006
"... Sequential Monte Carlo (SMC) methods are a powerful set of simulationbased techniques for sampling sequentially from a sequence of complex probability distributions. These methods rely on a combination of importance sampling and resampling techniques. In a Markov chain Monte Carlo (MCMC) framework, ..."
Abstract

Cited by 23 (5 self)
 Add to MetaCart
Sequential Monte Carlo (SMC) methods are a powerful set of simulationbased techniques for sampling sequentially from a sequence of complex probability distributions. These methods rely on a combination of importance sampling and resampling techniques. In a Markov chain Monte Carlo (MCMC) framework, block sampling strategies often perform much better than algorithms based on oneatatime sampling strategies if “good ” proposal distributions to update blocks of variables can be designed. In an SMC framework, standard algorithms sequentially sample the variables one at a time whereas, like MCMC, the efficiency of algorithms could be improved significantly by using block sampling strategies. Unfortunately, a direct implementation of such strategies is impossible as it requires the knowledge of integrals which do not admit closedform expressions. This article introduces a new methodology which bypasses this problem and is a natural extension of standard SMC methods. Applications to several sequential Bayesian inference problems demonstrate these methods.
The Term Structure of Interest Rates in a DSGE Model with Recursive Preferences
, 2010
"... We solve a dynamic stochastic general equilibrium (DSGE) model in which the representative household has Epstein and Zin recursive preferences. The parameters governing preferences and technology are estimated by means of maximum likelihood using macroeconomic data and asset prices, with a particul ..."
Abstract

Cited by 16 (1 self)
 Add to MetaCart
We solve a dynamic stochastic general equilibrium (DSGE) model in which the representative household has Epstein and Zin recursive preferences. The parameters governing preferences and technology are estimated by means of maximum likelihood using macroeconomic data and asset prices, with a particular focus on the term structure of interest rates. We estimate a large risk aversion, an elasticity of intertemporal substitution higher than one, and substantial adjustment costs. Furthermore, we identify the tensions within the model by estimating it on subsets of these data. We conclude by pointing out potential extensions that might improve the model’s fit.
The Econometrics of DSGE Models
, 2009
"... In this paper, I review the literature on the formulation and estimation of dynamic stochastic general equilibrium (DSGE) models with a special emphasis on Bayesian methods. First, I discuss the evolution of DSGE models over the last couple of decades. Second, I explain why the profession has decide ..."
Abstract

Cited by 13 (1 self)
 Add to MetaCart
In this paper, I review the literature on the formulation and estimation of dynamic stochastic general equilibrium (DSGE) models with a special emphasis on Bayesian methods. First, I discuss the evolution of DSGE models over the last couple of decades. Second, I explain why the profession has decided to estimate these models using Bayesian methods. Third, I brie‡y introduce some of the techniques required to compute and estimate these models. Fourth, I illustrate the techniques under consideration by estimating a benchmark DSGE model with real and nominal rigidities. I conclude by o¤ering some pointers for future research.
Fortune or Virtue: TimeVariant Volatilities Versus Parameter Drifting in U.S. Data ∗
, 2010
"... participants at several seminars for useful comments, and Béla Személy for invaluable research assistance. Beyond the usual disclaimer, we must note that any views expressed herein are those of the authors and not necessarily those of the Federal Reserve Bank of Atlanta, the Federal Reserve Bank of ..."
Abstract

Cited by 12 (4 self)
 Add to MetaCart
participants at several seminars for useful comments, and Béla Személy for invaluable research assistance. Beyond the usual disclaimer, we must note that any views expressed herein are those of the authors and not necessarily those of the Federal Reserve Bank of Atlanta, the Federal Reserve Bank of Philadelphia, or the Federal Reserve System. Finally, we also thank the NSF for financial support.
Likelihood estimation of DSGE models with EpsteinZin preferences
, 2008
"... This paper illustrates how to perform likelihoodbased inference in dynamic stochastic general equilibrium (DSGE) models with EpsteinZin preferences. This class of preferences has recently become a popular device to account for asset pricing observations and other phenomena that are challenging to ..."
Abstract

Cited by 10 (2 self)
 Add to MetaCart
This paper illustrates how to perform likelihoodbased inference in dynamic stochastic general equilibrium (DSGE) models with EpsteinZin preferences. This class of preferences has recently become a popular device to account for asset pricing observations and other phenomena that are challenging to address within the traditional stateseparable utility framework. However, there has been little econometric work in the area, particularly from a likelihood perspective, because of the difficulty in computing an equilibrium solution to the model and in deriving the likelihood function. To fill this gap, we build a real business cycle model with EpsteinZin preferences and longrun growth, solve it with perturbation techniques, and evaluate its likelihood with the particle filter. We estimate the model using U.S. macro and yield curve data. We discuss the ability of the model to explain the business cycle, asset prices, the comovements between these two, and the implications of our point estimates for the welfare cost of the business cycle.
A survey of sequential Monte Carlo methods for economics and finance
, 2009
"... This paper serves as an introduction and survey for economists to the field of sequential Monte Carlo methods which are also known as particle filters. Sequential Monte Carlo methods are simulation based algorithms used to compute the highdimensional and/or complex integrals that arise regularly in ..."
Abstract

Cited by 10 (1 self)
 Add to MetaCart
This paper serves as an introduction and survey for economists to the field of sequential Monte Carlo methods which are also known as particle filters. Sequential Monte Carlo methods are simulation based algorithms used to compute the highdimensional and/or complex integrals that arise regularly in applied work. These methods are becoming increasingly popular in economics and finance; from dynamic stochastic general equilibrium models in macroeconomics to option pricing. The objective of this paper is to explain the basics of the methodology, provide references to the literature, and cover some of the theoretical results that justify the methods in practice.