Results 1  10
of
113
Reinforcement Learning I: Introduction
, 1998
"... In which we try to give a basic intuitive sense of what reinforcement learning is and how it differs and relates to other fields, e.g., supervised learning and neural networks, genetic algorithms and artificial life, control theory. Intuitively, RL is trial and error (variation and selection, search ..."
Abstract

Cited by 5500 (120 self)
 Add to MetaCart
In which we try to give a basic intuitive sense of what reinforcement learning is and how it differs and relates to other fields, e.g., supervised learning and neural networks, genetic algorithms and artificial life, control theory. Intuitively, RL is trial and error (variation and selection, search) plus learning (association, memory). We argue that RL is the only field that seriously addresses the special features of the problem of learning from interaction to achieve longterm goals.
Generalization in Reinforcement Learning: Successful Examples Using Sparse Coarse Coding
 Advances in Neural Information Processing Systems 8
, 1996
"... On large problems, reinforcement learning systems must use parameterized function approximators such as neural networks in order to generalize between similar situations and actions. In these cases there are no strong theoretical results on the accuracy of convergence, and computational results have ..."
Abstract

Cited by 434 (20 self)
 Add to MetaCart
On large problems, reinforcement learning systems must use parameterized function approximators such as neural networks in order to generalize between similar situations and actions. In these cases there are no strong theoretical results on the accuracy of convergence, and computational results have been mixed. In particular, Boyan and Moore reported at last year's meeting a series of negative results in attempting to apply dynamic programming together with function approximation to simple control problems with continuous state spaces. In this paper, we present positive results for all the control tasks they attempted, and for one that is significantly larger. The most important differences are that we used sparsecoarsecoded function approximators (CMACs) whereas they used mostly global function approximators, and that we learned online whereas they learned offline. Boyan and Moore and others have suggested that the problems they encountered could be solved by using actual outcomes (...
Bandit based MonteCarlo Planning
 In: ECML06. Number 4212 in LNCS
, 2006
"... Abstract. For large statespace Markovian Decision Problems MonteCarlo planning is one of the few viable approaches to find nearoptimal solutions. In this paper we introduce a new algorithm, UCT, that applies bandit ideas to guide MonteCarlo planning. In finitehorizon or discounted MDPs the algo ..."
Abstract

Cited by 433 (7 self)
 Add to MetaCart
(Show Context)
Abstract. For large statespace Markovian Decision Problems MonteCarlo planning is one of the few viable approaches to find nearoptimal solutions. In this paper we introduce a new algorithm, UCT, that applies bandit ideas to guide MonteCarlo planning. In finitehorizon or discounted MDPs the algorithm is shown to be consistent and finite sample bounds are derived on the estimation error due to sampling. Experimental results show that in several domains, UCT is significantly more efficient than its alternatives. 1
Prioritized sweeping: Reinforcement learning with less data and less time
 Machine Learning
, 1993
"... We present a new algorithm, Prioritized Sweeping, for e cient prediction and control of stochastic Markov systems. Incremental learning methods such asTemporal Di erencing and Qlearning have fast real time performance. Classical methods are slower, but more accurate, because they make full use of ..."
Abstract

Cited by 379 (5 self)
 Add to MetaCart
(Show Context)
We present a new algorithm, Prioritized Sweeping, for e cient prediction and control of stochastic Markov systems. Incremental learning methods such asTemporal Di erencing and Qlearning have fast real time performance. Classical methods are slower, but more accurate, because they make full use of the observations. Prioritized Sweeping aims for the best of both worlds. It uses all previous experiences both to prioritize important dynamic programming sweeps and to guide the exploration of statespace. We compare Prioritized Sweeping with other reinforcement learning schemes for a number of di erent stochastic optimal control problems. It successfully solves large statespace real time problems with which other methods have di culty. 1 1
Acting Optimally in Partially Observable Stochastic Domains
, 1994
"... In this paper, we describe the partially observable Markov decision process (pomdp) approach to finding optimal or nearoptimal control strategies for partially observable stochastic environments, given a complete model of the environment. The pomdp approach was originally developed in the oper ..."
Abstract

Cited by 320 (18 self)
 Add to MetaCart
In this paper, we describe the partially observable Markov decision process (pomdp) approach to finding optimal or nearoptimal control strategies for partially observable stochastic environments, given a complete model of the environment. The pomdp approach was originally developed in the operations research community and provides a formal basis for planning problems that have been of interest to the AI community. We found the existing algorithms for computing optimal control strategies to be highly computationally inefficient and have developed a new algorithm that is empirically more efficient. We sketch this algorithm and present preliminary results on several small problems that illustrate important properties of the pomdp approach.
Selfimproving reactive agents based on reinforcement learning, planning and teaching
 Machine Learning
, 1992
"... Abstract. To date, reinforcement learning has mostly been studied solving simple learning tasks. Reinforcement learning methods that have been studied so far typically converge slowly. The purpose of this work is thus twofold: 1) to investigate the utility of reinforcement learning in solving much ..."
Abstract

Cited by 314 (3 self)
 Add to MetaCart
(Show Context)
Abstract. To date, reinforcement learning has mostly been studied solving simple learning tasks. Reinforcement learning methods that have been studied so far typically converge slowly. The purpose of this work is thus twofold: 1) to investigate the utility of reinforcement learning in solving much more complicated learning tasks than previously studied, and 2) to investigate methods that will speed up reinforcement learning. This paper compares eight reinforcement learning frameworks: adaptive heuristic critic (AHC) learning due to Sutton, Qlearning due to Watkins, and three extensions to both basic methods for speeding up learning. The three extensions are experience replay, learning action models for planning, and teaching. The frameworks were investigated using connectionism as an approach to generalization. To evaluate the performance of different frameworks, a dynamic environment was used as a testbed. The enviromaaent is moderately complex and nondeterministic. This paper describes these frameworks and algorithms in detail and presents empirical evaluation of the frameworks.
The partigame algorithm for variable resolution reinforcement learning in multidimensional statespaces
 MACHINE LEARNING
, 1995
"... Partigame is a new algorithm for learning feasible trajectories to goal regions in high dimensional continuous statespaces. In high dimensions it is essential that learning does not plan uniformly over a statespace. Partigame maintains a decisiontree partitioning of statespace and applies tec ..."
Abstract

Cited by 257 (8 self)
 Add to MetaCart
(Show Context)
Partigame is a new algorithm for learning feasible trajectories to goal regions in high dimensional continuous statespaces. In high dimensions it is essential that learning does not plan uniformly over a statespace. Partigame maintains a decisiontree partitioning of statespace and applies techniques from gametheory and computational geometry to efficiently and adaptively concentrate high resolution only on critical areas. The current version of the algorithm is designed to find feasible paths or trajectories to goal regions in high dimensional spaces. Future versions will be designed to find a solution that optimizes a realvalued criterion. Many simulated problems have been tested, ranging from twodimensional to ninedimensional statespaces, including mazes, path planning, nonlinear dynamics, and planar snake robots in restricted spaces. In all cases, a good solution is found in less than ten trials and a few minutes.
Reinforcement Learning with Perceptual Aliasing: The Perceptual Distinctions Approach
 In Proceedings of the Tenth National Conference on Artificial Intelligence
, 1992
"... It is known that Perceptual Aliasing may significantly diminish the effectiveness of reinforcement learning algorithms [ Whitehead and Ballard, 1991 ] . Perceptual aliasing occurs when multiple situations that are indistinguishable from immediate perceptual input require different responses from the ..."
Abstract

Cited by 218 (0 self)
 Add to MetaCart
(Show Context)
It is known that Perceptual Aliasing may significantly diminish the effectiveness of reinforcement learning algorithms [ Whitehead and Ballard, 1991 ] . Perceptual aliasing occurs when multiple situations that are indistinguishable from immediate perceptual input require different responses from the system. For example, if a robot can only see forward, yet the presence of a battery charger behind it determines whether or not it should backup, immediate perception alone is insufficient for determining the most appropriate action. It is problematic since reinforcement algorithms typically learn a control policy from immediate perceptual input to the optimal choice of action. This paper introduces the predictive distinctions approach to compensate for perceptual aliasing caused from incomplete perception of the world. An additional component, a predictive model, is utilized to track aspects of the world that may not be visible at all times. In addition to the control policy, the model mus...
Asynchronous stochastic approximation and Qlearning
 Machine Learning
, 1994
"... Abstract £ We provide some general results on the convergence of a class of stochastic approximation algorithms and their parallel and asynchronous variants. We then use these results to study the Qlearning algorithm, areinforcement learning method for solving Markov decision problems, and establi ..."
Abstract

Cited by 202 (4 self)
 Add to MetaCart
Abstract £ We provide some general results on the convergence of a class of stochastic approximation algorithms and their parallel and asynchronous variants. We then use these results to study the Qlearning algorithm, areinforcement learning method for solving Markov decision problems, and establish its convergence under conditions more general than previously available.
FeatureBased Methods For Large Scale Dynamic Programming
 Machine Learning
, 1994
"... We develop a methodological framework and present a few different ways in which dynamic programming and compact representations can be Combined to solve large scale stochastic control problems. In particular, we develop algorithms that employ two types of featurebased compact representations, that ..."
Abstract

Cited by 179 (9 self)
 Add to MetaCart
We develop a methodological framework and present a few different ways in which dynamic programming and compact representations can be Combined to solve large scale stochastic control problems. In particular, we develop algorithms that employ two types of featurebased compact representations, that is, representations that involve an arbitrarily complex feature extraction stage and a relatively simple approximation architecture. We prove the convergence of these algorithms and provide bounds on the approximation error. We also apply one of these algorithms to pro duce a computer program that plays Tetris at a respectable skill level. Furthermore, we provide a counterexample illustrating the difficulties of integrating compact representations and dynamic programming: which exemplifies the shortcomings of several methods in current practice, including Qlearning and temporaldifference learning.