Results 1  10
of
105
Particle Representations for MeasureValued Population Models
 Ann. Probab
, 1998
"... Models of populations in which a type or location, represented by a point in a metric space E, is associated with each individual in the population are considered. A population process is neutral if the chances of an individual replicating or dying do not depend on its type. Measurevalued processes ..."
Abstract

Cited by 48 (3 self)
 Add to MetaCart
Models of populations in which a type or location, represented by a point in a metric space E, is associated with each individual in the population are considered. A population process is neutral if the chances of an individual replicating or dying do not depend on its type. Measurevalued processes are obtained as infinite population limits for a large class of neutral population models, and it is shown that these measurevalued processes can be represented in terms of the total mass of the population and the de Finetti measures associated with an E 1 valued particle model X = (X 1 ; X 2 ; : : :) such that for each t 0, (X 1 (t); X 2 (t); : : :) is exchangeable. The construction gives an explicit connection between genealogical and diffusion models in population genetics. The class of measurevalued models covered includes both neutral FlemingViot and DawsonWatanabe processes. The particle model gives a simple representation of the DawsonPerkins historical process and Perkins h...
Construction Of Markovian Coalescents
 Ann. Inst. Henri Poincar'e
, 1997
"... Partitionvalued and measurevalued coalescent Markov processes are constructed whose state describes the decomposition of a finite total mass m into a finite or countably infinite number of masses with sum m, and whose evolution is determined by the following intuitive prescription: each pair of ma ..."
Abstract

Cited by 44 (20 self)
 Add to MetaCart
Partitionvalued and measurevalued coalescent Markov processes are constructed whose state describes the decomposition of a finite total mass m into a finite or countably infinite number of masses with sum m, and whose evolution is determined by the following intuitive prescription: each pair of masses of magnitudes x and y runs the risk of a binary collision to form a single mass of magnitude x+y at rate (x; y), for some nonnegative, symmetric collision rate kernel (x; y). Such processes with finitely many masses have been used to model polymerization, coagulation, condensation, and the evolution of galactic clusters by gravitational attraction. With a suitable choice of state space, and under appropriate restrictions on and the initial distribution of mass, it is shown that such processes can be constructed as Feller or Fellerlike processes. A number of further results are obtained for the additive coalescent with collision kernel (x; y) = x + y. This process, which arises fro...
Coalescent Random Forests
 J. COMBINATORIAL THEORY A
, 1998
"... Various enumerations of labeled trees and forests, including Cayley's formula n n\Gamma2 for the number of trees labeled by [n], and Cayley's multinomial expansion over trees, are derived from the following coalescent construction of a sequence of random forests (R n ; R n\Gamma1 ; : : : ; R 1 ..."
Abstract

Cited by 38 (18 self)
 Add to MetaCart
Various enumerations of labeled trees and forests, including Cayley's formula n n\Gamma2 for the number of trees labeled by [n], and Cayley's multinomial expansion over trees, are derived from the following coalescent construction of a sequence of random forests (R n ; R n\Gamma1 ; : : : ; R 1 ) such that R k has uniform distribution over the set of all forests of k rooted trees labeled by [n]. Let R n be the trivial forest with n root vertices and no edges. For n k 2, given that R n ; : : : ; R k have been defined so that R k is a rooted forest of k trees, define R k\Gamma1 by addition to R k of a single edge picked uniformly at random from the set of n(k \Gamma 1) edges which when added to R k yield a rooted forest of k \Gamma 1 trees. This coalescent construction is related to a model for a physical process of clustering or coagulation, the additive coalescent in which a system of masses is subject to binary coalescent collisions, with each pair of masses of magnitude...
Regenerative composition structures
 ANN. PROBAB
, 2005
"... A new class of random composition structures (the ordered analog of Kingman’s partition structures) is defined by a regenerative description of component sizes. Each regenerative composition structure is represented by a process of random sampling of points from an exponential distribution on the po ..."
Abstract

Cited by 32 (18 self)
 Add to MetaCart
A new class of random composition structures (the ordered analog of Kingman’s partition structures) is defined by a regenerative description of component sizes. Each regenerative composition structure is represented by a process of random sampling of points from an exponential distribution on the positive halfline, and separating the points into clusters by an independent regenerative random set. Examples are composition structures derived from residual allocation models, including one associated with the Ewens sampling formula, and composition structures derived from the zero set of a Brownian motion or Bessel process. We provide characterisation results and formulas relating the distribution of the regenerative composition to the Lévy parameters of a subordinator whose range is the corresponding regenerative set. In particular, the only reversible regenerative composition structures are those associated with the interval partition of [0, 1] generated by excursions of a standard Bessel bridge of dimension 2 − 2α for some α ∈ [0, 1].
PoissonDirichlet and GEM invariant distributions for splitandmerge transformations of an interval partition
, 2001
"... This paper introduces a splitandmerge transformation of interval partitions which combines some features of one model studied by Gnedin and Kerov [10, 11] and another studied by Tsilevich [30, 29] and MayerWolf, Zeitouni and Zerner [20]. The invariance under this splitandmerge transformatio ..."
Abstract

Cited by 28 (0 self)
 Add to MetaCart
This paper introduces a splitandmerge transformation of interval partitions which combines some features of one model studied by Gnedin and Kerov [10, 11] and another studied by Tsilevich [30, 29] and MayerWolf, Zeitouni and Zerner [20]. The invariance under this splitandmerge transformation of the interval partition generated by a suitable Poisson process yields a simple proof of the recent result of [20] that a PoissonDirichlet distribution is invariant for a closely related fragmentationcoagulation process. Uniqueness and convergence to the invariant measure are established for the splitandmerge transformation of interval partitions, but the corresponding problems for the fragmentationcoagulation process remain open.
Homogeneous fragmentation processes
, 2000
"... The purpose of this work is to define and study homogeneous fragmentation processes in continuous time, which are meant to describe the evolution of an object that breaks down randomly into pieces as time passes. Roughly, we show that the dynamic of such a fragmentation process is determined by som ..."
Abstract

Cited by 26 (4 self)
 Add to MetaCart
The purpose of this work is to define and study homogeneous fragmentation processes in continuous time, which are meant to describe the evolution of an object that breaks down randomly into pieces as time passes. Roughly, we show that the dynamic of such a fragmentation process is determined by some exchangeable measure on the set of partitions of N, and results from the combination of two different phenomena: a continuous erosion and sudden dislocations. In particular, we determine the class of fragmentation measures which can arise in this setting, and investigate the evolution of the size of the fragment that contains a point pick at random at the initial time.
Selfsimilar fragmentations
, 2000
"... We introduce a probabilistic model that is meant to describe an object that falls apart randomly as time passes and fulfills a certain scaling property. We show that the distribution of such a process is determined by its index of selfsimilarity α ∈ R, a rate of erosion c ≥ 0, and a socalled Lév ..."
Abstract

Cited by 24 (8 self)
 Add to MetaCart
We introduce a probabilistic model that is meant to describe an object that falls apart randomly as time passes and fulfills a certain scaling property. We show that the distribution of such a process is determined by its index of selfsimilarity α ∈ R, a rate of erosion c ≥ 0, and a socalled Lévy measure that accounts for sudden dislocations. The key of the analysis is provided by a transformation of selfsimilar fragmentations which enables us to reduce the study to the homogeneous case α = 0 which is treated in [6].
Betacoalescents and continuous stable random trees
, 2006
"... Coalescents with multiple collisions, also known as Λcoalescents, were introduced by Pitman and Sagitov in 1999. These processes describe the evolution of particles that undergo stochastic coagulation in such a way that several blocks can merge at the same time to form a single block. In the case t ..."
Abstract

Cited by 23 (8 self)
 Add to MetaCart
Coalescents with multiple collisions, also known as Λcoalescents, were introduced by Pitman and Sagitov in 1999. These processes describe the evolution of particles that undergo stochastic coagulation in such a way that several blocks can merge at the same time to form a single block. In the case that the measure Λ is the Beta(2 − α, α) distribution, they are also known to describe the genealogies of large populations where a single individual can produce a large number of offspring. Here we use a recent result of Birkner et al. to prove that Betacoalescents can be embedded in continuous stable random trees, about which much is known due to recent progress of Duquesne and Le Gall. Our proof is based on a construction of the DonnellyKurtz lookdown process using continuous random trees which is of independent interest. This produces a number of results concerning the smalltime behavior of Betacoalescents. Most notably, we recover an almost sure limit theorem of the authors for the number of blocks at small times, and give the multifractal spectrum corresponding to the emergence of blocks with atypical size. Also, we are able to find exact asymptotics for sampling formulae corresponding to the site frequency spectrum and allele frequency spectrum associated with mutations in the context of population genetics.
Discretization methods for homogeneous fragmentations
 J. London Math. soc
, 2005
"... Summary. Homogeneous fragmentations describe the evolution of a unit mass that breaks down randomly into pieces as time passes. They can be thought of as continuous time analogs of a certain type of branching random walks, which suggests the use of timediscretization to shift known results from the ..."
Abstract

Cited by 23 (7 self)
 Add to MetaCart
Summary. Homogeneous fragmentations describe the evolution of a unit mass that breaks down randomly into pieces as time passes. They can be thought of as continuous time analogs of a certain type of branching random walks, which suggests the use of timediscretization to shift known results from the theory of branching random walks to the fragmentation setting. In particular, this yields interesting information about the asymptotic behaviour of fragmentations. On the other hand, homogeneous fragmentations can also be investigated using a powerful technique of discretization of space due to Kingman, namely, the theory of exchangeable partitions of N. Spatial discretization is especially wellsuited to develop directly for continuous times the conceptual method of probability tilting of Lyons, Pemantle and Peres. Key words. Fragmentation, branching random walk, timediscretization, spacediscretization, probability tilting. A.M.S. Classification. 60 J 25, 60 G 09.