Results 1  10
of
80
Model selection and estimation in the Gaussian graphical model
 BIOMETRIKA (2007), PP. 1–17
, 2007
"... ..."
A characterization of Markov equivalence classes for acyclic digraphs
, 1995
"... Undirected graphs and acyclic digraphs (ADGs), as well as their mutual extension to chain graphs, are widely used to describe dependencies among variables in multivariate distributions. In particular, the likelihood functions of ADG models admit convenient recursive factorizations that often allow e ..."
Abstract

Cited by 91 (7 self)
 Add to MetaCart
Undirected graphs and acyclic digraphs (ADGs), as well as their mutual extension to chain graphs, are widely used to describe dependencies among variables in multivariate distributions. In particular, the likelihood functions of ADG models admit convenient recursive factorizations that often allow explicit maximum likelihood estimates and that are well suited to building Bayesian networks for expert systems. Whereas the undirected graph associated with a dependence model is uniquely determined, there may, however, be many ADGs that determine the same dependence ( = Markov) model. Thus, the family of all ADGs with a given set of vertices is naturally partitioned into Markovequivalence classes, each class being associated with a unique statistical model. Statistical procedures, such as model selection or model averaging, that fail to take into account these equivalence classes, may incur substantial computational or other inefficiencies. Here it is shown that each Markovequivalence class is uniquely determined by a single chain graph, the essential graph, that is itself simultaneously Markov equivalent to all ADGs in the equivalence class. Essential graphs are characterized, a polynomialtime algorithm for their construction is given, and their applications to model selection and other statistical
ANCESTRAL GRAPH MARKOV MODELS
, 2002
"... This paper introduces a class of graphical independence models that is closed under marginalization and conditioning but that contains all DAG independence models. This class of graphs, called maximal ancestral graphs, has two attractive features: there is at most one edge between each pair of verti ..."
Abstract

Cited by 74 (17 self)
 Add to MetaCart
This paper introduces a class of graphical independence models that is closed under marginalization and conditioning but that contains all DAG independence models. This class of graphs, called maximal ancestral graphs, has two attractive features: there is at most one edge between each pair of vertices; every missing edge corresponds to an independence relation. These features lead to a simple parameterization of the corresponding set of distributions in the Gaussian case.
Chain Graph Models and their Causal Interpretations
 B
, 2001
"... Chain graphs are a natural generalization of directed acyclic graphs (DAGs) and undirected graphs. However, the apparent simplicity of chain graphs belies the subtlety of the conditional independence hypotheses that they represent. There are a number of simple and apparently plausible, but ultim ..."
Abstract

Cited by 46 (4 self)
 Add to MetaCart
Chain graphs are a natural generalization of directed acyclic graphs (DAGs) and undirected graphs. However, the apparent simplicity of chain graphs belies the subtlety of the conditional independence hypotheses that they represent. There are a number of simple and apparently plausible, but ultimately fallacious interpretations of chain graphs that are often invoked, implicitly or explicitly. These interpretations also lead to awed methods for applying background knowledge to model selection. We present a valid interpretation by showing how the distribution corresponding to a chain graph may be generated as the equilibrium distribution of dynamic models with feedback. These dynamic interpretations lead to a simple theory of intervention, extending the theory developed for DAGs. Finally, we contrast chain graph models under this interpretation with simultaneous equation models which have traditionally been used to model feedback in econometrics. Keywords: Causal model; cha...
An Alternative Markov Property for Chain Graphs
 Scand. J. Statist
, 1996
"... Graphical Markov models use graphs, either undirected, directed, or mixed, to represent possible dependences among statistical variables. Applications of undirected graphs (UDGs) include models for spatial dependence and image analysis, while acyclic directed graphs (ADGs), which are especially conv ..."
Abstract

Cited by 46 (4 self)
 Add to MetaCart
Graphical Markov models use graphs, either undirected, directed, or mixed, to represent possible dependences among statistical variables. Applications of undirected graphs (UDGs) include models for spatial dependence and image analysis, while acyclic directed graphs (ADGs), which are especially convenient for statistical analysis, arise in such fields as genetics and psychometrics and as models for expert systems and Bayesian belief networks. Lauritzen, Wermuth, and Frydenberg (LWF) introduced a Markov property for chain graphs, which are mixed graphs that can be used to represent simultaneously both causal and associative dependencies and which include both UDGs and ADGs as special cases. In this paper an alternative Markov property (AMP) for chain graphs is introduced, which in some ways is a more direct extension of the ADG Markov property than is the LWF property for chain graph. 1 INTRODUCTION Graphical Markov models use graphs, either undirected, directed, or mixed, to represent...
Graphs, Causality, And Structural Equation Models
, 1998
"... Structural equation modeling (SEM) has dominated causal analysis in the social and behavioral sciences since the 1960s. Currently, many SEM practitioners are having difficulty articulating the causal content of SEM and are seeking foundational answers. ..."
Abstract

Cited by 44 (14 self)
 Add to MetaCart
Structural equation modeling (SEM) has dominated causal analysis in the social and behavioral sciences since the 1960s. Currently, many SEM practitioners are having difficulty articulating the causal content of SEM and are seeking foundational answers.
A robust procedure for gaussian graphical model search from microarray data with p larger than n
 Journal of Machine Learning Research
, 2006
"... Learning of largescale networks of interactions from microarray data is an important and challenging problem in bioinformatics. A widely used approach is to assume that the available data constitute a random sample from a multivariate distribution belonging to a Gaussian graphical model. As a conse ..."
Abstract

Cited by 26 (3 self)
 Add to MetaCart
Learning of largescale networks of interactions from microarray data is an important and challenging problem in bioinformatics. A widely used approach is to assume that the available data constitute a random sample from a multivariate distribution belonging to a Gaussian graphical model. As a consequence, the prime objects of inference are fullorder partial correlations which are partial correlations between two variables given the remaining ones. In the context of microarray data the number of variables exceed the sample size and this precludes the application of traditional structure learning procedures because a sampling version of fullorder partial correlations does not exist. In this paper we consider limitedorder partial correlations, these are partial correlations computed on marginal distributions of manageable size, and provide a set of rules that allow one to assess the usefulness of these quantities to derive the independence structure of the underlying Gaussian graphical model. Furthermore, we introduce a novel structure learning procedure based on a quantity, obtained from limitedorder partial correlations, that we call the nonrejection rate. The applicability and usefulness of the procedure are demonstrated by both simulated and real data.
Multimodality of the likelihood in the bivariate seemingly unrelated regression model
, 2002
"... ..."
THE SCIENTIFIC MODEL OF CAUSALITY
, 2005
"... Causality is a very intuitive notion that is difficult to make precise without lapsing into tautology. Two ingredients are central to any definition: (1) a set of possible outcomes (counterfactuals) generated by a function of a set of ‘‘factors’ ’ or ‘‘determinants’ ’ and (2) a manipulation where on ..."
Abstract

Cited by 20 (1 self)
 Add to MetaCart
Causality is a very intuitive notion that is difficult to make precise without lapsing into tautology. Two ingredients are central to any definition: (1) a set of possible outcomes (counterfactuals) generated by a function of a set of ‘‘factors’ ’ or ‘‘determinants’ ’ and (2) a manipulation where one (or more) of the ‘‘factors’ ’ or ‘‘determinants’’ is changed. An effect is realized as a change in the argument of a stable function that produces the same change in the outcome for a class of interventions that change the ‘‘factors’ ’ by the same amount. The outcomes are compared at different levels of the factors or generating variables. Holding all factors save one at a constant level, the change in the outcome associated with manipulation of the varied factor is called a causal effect of the manipulated factor. This definition, or some version of it, goes back to Mill (1848) and Marshall (1890). Haavelmo’s (1943) made it more precise within the context of linear equations models. The phrase ‘ceteris paribus’ (everything else held constant) is a mainstay of economic analysis
Markov equivalence for ancestral graphs
, 2004
"... Ancestral graph models can encode conditional independence relations that arise in directed acyclic graph (DAG) models with latent and selection variables. However, for any 3JJ.cestral graph, there may be several other graphs to which it is Markov equivalent. We state and prove conditions under whic ..."
Abstract

Cited by 16 (5 self)
 Add to MetaCart
Ancestral graph models can encode conditional independence relations that arise in directed acyclic graph (DAG) models with latent and selection variables. However, for any 3JJ.cestral graph, there may be several other graphs to which it is Markov equivalent. We state and prove conditions under which two maximal ancestral graphs are Markov equivalent to each other, thereby extending analogous results for DAGs given by other authors. 'University of W2k'lhi.ng1;on Technical No. 466. Contents