Results 1 
8 of
8
The hidden life of latent variables: Bayesian learning with mixed graph models
, 2008
"... Directed acyclic graphs (DAGs) have been widely used as a representation of conditional independence in machine learning and statistics. Moreover, hidden or latent variables are often an important component of graphical models. However, DAG models suffer from an important limitation: the family of D ..."
Abstract

Cited by 8 (4 self)
 Add to MetaCart
Directed acyclic graphs (DAGs) have been widely used as a representation of conditional independence in machine learning and statistics. Moreover, hidden or latent variables are often an important component of graphical models. However, DAG models suffer from an important limitation: the family of DAGs is not closed under marginalization of hidden variables. This means that in general we cannot use a DAG to represent the independencies over a subset of variables in a larger DAG. Directed mixed graphs (DMGs) are a representation that includes DAGs as a special case, and overcomes this limitation. This paper introduces algorithms for performing Bayesian inference in Gaussian and probit DMG models. An important requirement for inference is the characterization of the distribution over parameters of the models. We introduce a new distribution for covariance matrices of Gaussian DMGs. We discuss and illustrate how several Bayesian machine learning tasks can benefit from the principle presented here: the power to model dependencies that are generated from hidden variables, but without necessarily modelling such variables explicitly.
Computing Maximum Likelihood Estimates in Recursive . . .
, 2008
"... In recursive linear models, the multivariate normal joint distribution of all variables exhibits a dependence structure induced by a recursive (or acyclic) system of linear structural equations. These linear models have a long tradition and appear in seemingly unrelated regressions, structural equat ..."
Abstract

Cited by 6 (2 self)
 Add to MetaCart
In recursive linear models, the multivariate normal joint distribution of all variables exhibits a dependence structure induced by a recursive (or acyclic) system of linear structural equations. These linear models have a long tradition and appear in seemingly unrelated regressions, structural equation modelling, and approaches to causal inference. They are also related to Gaussian graphical models via a classical representation known as a path diagram. Despite the models ’ long history, a number of problems remain open. In this paper, we address the problem of computing maximum likelihood estimates in the subclass of ‘bowfree ’ recursive linear models. The term ‘bowfree ’ refers to the condition that the errors for variables i and j be uncorrelated if variable i occurs in the structural equation for variable j. We introduce a new algorithm, termed Residual Iterative Conditional Fitting (RICF), that can be implemented using only least squares computations. In contrast to existing algorithms, RICF has clear convergence properties and finds parameter estimates in closed form whenever possible.
Sequences of regressions and their independences
, 2012
"... Ordered sequences of univariate or multivariate regressions provide statistical modelsfor analysingdata fromrandomized, possiblysequential interventions, from cohort or multiwave panel studies, but also from crosssectional or retrospective studies. Conditional independences are captured by what we ..."
Abstract

Cited by 6 (1 self)
 Add to MetaCart
Ordered sequences of univariate or multivariate regressions provide statistical modelsfor analysingdata fromrandomized, possiblysequential interventions, from cohort or multiwave panel studies, but also from crosssectional or retrospective studies. Conditional independences are captured by what we name regression graphs, provided the generated distribution shares some properties with a joint Gaussian distribution. Regression graphs extend purely directed, acyclic graphs by two types of undirected graph, one type for components of joint responses and the other for components of the context vector variable. We review the special features and the history of regression graphs, prove criteria for Markov equivalence anddiscussthenotion of simpler statistical covering models. Knowledgeof Markov equivalence provides alternative interpretations of a given sequence of regressions, is essential for machine learning strategies and permits to use the simple graphical criteria of regression graphs on graphs for which the corresponding criteria are in general more complex. Under the known conditions that a Markov equivalent directed acyclic graph exists for any given regression graph, we give a polynomial time algorithm to find one such graph.
A Localization Approach to Improve Iterative Proportional Scaling in Gaussian Graphical Models
, 2008
"... We discuss an efficient implementation of the iterative proportional scaling procedure in the multivariate Gaussian graphical models. We show that the computational cost can be reduced by localization of the update procedure in each iterative step by using the structure of a decomposable model obtai ..."
Abstract

Cited by 2 (1 self)
 Add to MetaCart
(Show Context)
We discuss an efficient implementation of the iterative proportional scaling procedure in the multivariate Gaussian graphical models. We show that the computational cost can be reduced by localization of the update procedure in each iterative step by using the structure of a decomposable model obtained by triangulation of the graph associated with the model. Some numerical experiments demonstrate the competitive performance of the proposed algorithm. 1
Robust Graphical Modeling with tDistributions
"... Graphical Gaussian models have proven to be useful tools for exploring network structures based on multivariate data. Applications to studies of gene expression have generated substantial interest in these models, and resulting recent progress includes the development of fitting methodology involvin ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
Graphical Gaussian models have proven to be useful tools for exploring network structures based on multivariate data. Applications to studies of gene expression have generated substantial interest in these models, and resulting recent progress includes the development of fitting methodology involving penalization of the likelihood function. In this paper we advocate the use of the multivariate t and related distributions for more robust inference of graphs. In particular, we demonstrate that penalized likelihood inference combined with an application of the EM algorithm provides a simple and computationally efficient approach to model selection in the tdistribution case. 1
Proportional Scaling in Gaussian Graphical Models
, 2008
"... scholarly and technical work on a noncommercial basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, notwithstanding that they have offered their works here electronically. It is understood that all persons copying this information will adhere to the ..."
Abstract
 Add to MetaCart
(Show Context)
scholarly and technical work on a noncommercial basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, notwithstanding that they have offered their works here electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author’s copyright. These works may not be reposted without the explicit permission of the copyright holder. A Localization Approach to Improve Iterative
1 Inequalities on partial correlations in Gaussian graphical models
"... This short paper proves inequalities that restrict the magnitudes of the partial correlations in starshaped structures in Gaussian graphical models. These inequalities have to be satisfied by distributions that are used for generating simulated data to test structurelearning algorithms, but method ..."
Abstract
 Add to MetaCart
This short paper proves inequalities that restrict the magnitudes of the partial correlations in starshaped structures in Gaussian graphical models. These inequalities have to be satisfied by distributions that are used for generating simulated data to test structurelearning algorithms, but methods that have been used to create such distributions do not always ensure that they are. The inequalities are also noteworthy because stars are common and meaningful in realworld networks. 1. Introduction and