Results 1 - 10
of
134
The role of prefrontal cortex in working-memory capacity, executive attention, and general fluid intelligence: An individual-differences perspective
, 2002
"... ..."
Dissociable executive functions in the dynamic control of behavior: inhibition, error detection, and correction
- Neuroimage
, 2002
"... The present study employed event-related fMRI and EEG to investigate the biological basis of the cognitive control of behavior. Using a GO/NOGO task optimized to produce response inhibitions, frequent commission errors, and the opportunity for subsequent behavioral correction, we identified distinct ..."
Abstract
-
Cited by 159 (4 self)
- Add to MetaCart
(Show Context)
The present study employed event-related fMRI and EEG to investigate the biological basis of the cognitive control of behavior. Using a GO/NOGO task optimized to produce response inhibitions, frequent commission errors, and the opportunity for subsequent behavioral correction, we identified distinct cortical areas associated with each of these specific executive processes. Two cortical systems, one involving right prefrontal and parietal areas and the second regions of the cingulate, underlay inhibitory control. The involvement of these two systems was predicated upon the difficulty or urgency of the inhibition and each was employed to different extents by high- and low-absentminded subjects. Errors were associated with medial activation incorporating the anterior cingulate and pre-SMA while behavioral alteration subsequent to errors was associated with both the anterior cingulate and the left prefrontal cortex. Furthermore, the EEG data demonstrated that successful response inhibition depended upon the timely activation of cortical areas as predicted by race models of response selection. The results highlight how higher cognitive functions responsible for behavioral control can result from the dynamic interplay of distinct cortical systems. © 2002 Elsevier Science (USA)
How are visuospatial working memory, executive functioning, and spatial abilities related? A latent-variable analysis
- Journal of Experimental Psychology: General
, 1991
"... This study examined the relationships among visuospatial working memory (WM) executive functioning, and spatial abilities. One hundred sixty-seven participants performed visuospatial short-term memory (STM) and WM span tasks, executive functioning tasks, and a set of paper-and-pencil tests of spatia ..."
Abstract
-
Cited by 113 (8 self)
- Add to MetaCart
(Show Context)
This study examined the relationships among visuospatial working memory (WM) executive functioning, and spatial abilities. One hundred sixty-seven participants performed visuospatial short-term memory (STM) and WM span tasks, executive functioning tasks, and a set of paper-and-pencil tests of spatial abilities that load on 3 correlated but distinguishable factors (Spatial Visualization, Spatial Relations, and Perceptual Speed). Confirmatory factor analysis results indicated that, in the visuospatial domain, processing-and-storage WM tasks and storage-oriented STM tasks equally implicate executive functioning and are not clearly distinguishable. These results provide a contrast with existing evidence from the verbal domain and support the proposal that the visuospatial sketchpad may be closely tied to the central executive. Further, structural equation modeling results supported the prediction that, whereas they all implicate some degree of visuospatial storage, the 3 spatial ability factors differ in the degree of executive involvement (highest for Spatial Visualization and lowest for Perceptual Speed). Such results highlight the usefulness of a WM perspective in characterizing the nature of cognitive abilities and, more generally, human intelligence. One's ability to temporarily maintain relevant information in mind has long been considered an indicator of one's intellectual
Maturation of widely distributed brain function subserves cognitive development
- NeuroImage
, 2001
"... Cognitive and brain maturational changes continue throughout late childhood and adolescence. During this time, increasing cognitive control over behavior enhances the voluntary suppression of reflexive/impulsive response tendencies. Recently, with the advent of functional MRI, it has become possible ..."
Abstract
-
Cited by 87 (5 self)
- Add to MetaCart
(Show Context)
Cognitive and brain maturational changes continue throughout late childhood and adolescence. During this time, increasing cognitive control over behavior enhances the voluntary suppression of reflexive/impulsive response tendencies. Recently, with the advent of functional MRI, it has become possible to characterize changes in brain activity during cognitive development. In order to investigate the cognitive and brain maturation subserving the ability to voluntarily suppress context-inappropriate behavior, we tested 8–30 year olds in an oculomotor response–suppression task. Behavioral results indicated that adult-like ability to inhibit prepotent responses matured gradually through childhood and adolescence. Functional MRI results indicated that brain activation in frontal, parietal, striatal, and thalamic regions increased progressively from childhood to adulthood. Prefrontal cortex was more active in adolescents than in children or adults; adults demonstrated greater activation in the lateral cerebellum than younger subjects. These results suggest that efficient top-down modulation of reflexive acts may not be fully developed until adulthood and provide evidence that maturation of function across widely distributed brain regions lays the groundwork for enhanced voluntary control of behavior during cognitive development. © 2001 Academic Press Key Words: inhibition; eye movements; cerebellum; neuroimaging.
When keeping in mind supports later bringing to mind: neural markers of phonological rehearsal predict subsequent remembering
- J Cogn Neurosci
, 2001
"... Abstract & The ability to bring to mind a past experience depends on the cognitive and neural processes that are engaged during the experience and that support memory formation. A central and much debated question is whether the processes that underlie rote verbal rehearsal-that is, working mem ..."
Abstract
-
Cited by 79 (9 self)
- Add to MetaCart
(Show Context)
Abstract & The ability to bring to mind a past experience depends on the cognitive and neural processes that are engaged during the experience and that support memory formation. A central and much debated question is whether the processes that underlie rote verbal rehearsal-that is, working memory mechanisms that keep information in mind-impact memory formation and subsequent remembering. The present study used eventrelated functional magnetic resonance imaging (fMRI) to explore the relation between working memory maintenance operations and long-term memory. Specifically, we investigated whether the magnitude of activation in neural regions supporting the on-line maintenance of verbal codes is predictive of subsequent memory for words that were roterehearsed during learning. Furthermore, during rote rehearsal, the extent of neural activation in regions associated with semantic retrieval was assessed to determine the role that incidental semantic elaboration may play in subsequent memory for rote-rehearsed items. Results revealed that (a) the magnitude of activation in neural regions previously associated with phonological rehearsal (left prefrontal, bilateral parietal, supplementary motor, and cerebellar regions) was correlated with subsequent memory, and (b) while rote rehearsal did not-on average-elicit activation in an anterior left prefrontal region associated with semantic retrieval, activation in this region was greater for trials that were subsequently better remembered. Contrary to the prevalent view that rote rehearsal does not impact learning, these data suggest that phonological maintenance mechanisms, in addition to semantic elaboration, support the encoding of an experience such that it can be later remembered. &
Prefrontal contributions to executive control: fMRI evidence for functional distinctions within lateral prefrontal cortex.
- Neuroimage
, 2001
"... The prefrontal cortex (PFC) plays a fundamental role in internally guided behavior. Although it is generally accepted that PFC subserves working memory and executive control operations, it remains unclear whether the subregions within lateral PFC support distinct executive control processes. An eve ..."
Abstract
-
Cited by 75 (4 self)
- Add to MetaCart
(Show Context)
The prefrontal cortex (PFC) plays a fundamental role in internally guided behavior. Although it is generally accepted that PFC subserves working memory and executive control operations, it remains unclear whether the subregions within lateral PFC support distinct executive control processes. An event-related fMRI study was implemented to test the hypothesis that ventrolateral and dorsolateral PFC are functionally distinct, as well as to assess whether functional specialization exists within ventrolateral PFC. Participants performed two executive control tasks that differed in the types of control processes required. During rote rehearsal, participants covertly rehearsed three words in the order presented, thus requiring phonological access and maintenance. During elaborative rehearsal, participants made semantic comparisons between three words held in working memory, reordering them from least to most desirable. Thus, in addition to maintenance, elaborative rehearsal required goal-relevant coding of items in working memory ("monitoring") and selection from among the items to implement their reordering. Results revealed that left posterior ventrolateral PFC was active during performance of both tasks, whereas right dorsolateral PFC was differentially engaged during elaborative rehearsal. The temporal characteristics of the hemodynamic responses further suggested that dorsolateral activation lagged ventrolateral activation. Finally, differential activation patterns were observed within left ventrolateral PFC, distinguishing between posterior and anterior regions. These data suggest that anatomically separable subregions within lateral PFC may be functionally distinct and are consistent with models that posit a hierarchical relationship between dorsolateral and ventrolateral regions such that the former monitors and selects goal-relevant representations being maintained by the latter.
Measuring functional connectivity during distinct stages of a cognitive task.
- Neuroimage
, 2004
"... The inherently multivariate nature of functional brain imaging data affords the unique opportunity to explore how anatomically disparate brain areas interact during cognitive tasks. We introduce a new method for characterizing inter-regional interactions using event-related functional magnetic reso ..."
Abstract
-
Cited by 59 (2 self)
- Add to MetaCart
(Show Context)
The inherently multivariate nature of functional brain imaging data affords the unique opportunity to explore how anatomically disparate brain areas interact during cognitive tasks. We introduce a new method for characterizing inter-regional interactions using event-related functional magnetic resonance imaging (fMRI) data. This method's principle advantage over existing analytical techniques is its ability to model the functional connectivity between brain regions during distinct stages of a cognitive task. The method is implemented by using separate covariates to model the activity evoked during each stage of each individual trial in the context of the general linear model (GLM). The resulting parameter estimates (beta values) are sorted according to the stage from which they were derived to form a set of stage-specific beta series. Regions whose beta series are correlated during a given stage are inferred to be functionally interacting during that stage. To validate the assumption that correlated fluctuations in trial-to-trial beta values imply functional connectivity, we applied the method to an event-related fMRI data set in which subjects performed two sequencetapping tasks. In concordance with previous electrophysiological and fMRI coherence studies, we found that the task requiring greater bimanual coordination induced stronger correlations between motor regions of the two hemispheres. The method was then applied to an event-related fMRI data set in which subjects performed a delayed recognition task. Distinct functional connectivity maps were generated during the component stages of this task, illustrating how important and novel observations of neural networks within the isolated stages of a cognitive task can be obtained.
Increased Brain Activity in Frontal and Parietal Cortex Underlies the Development of Visuospatial Working Memory Capacity during Childhood
"... & The aim of this study was to identify changes in brain activity associated with the increase in working memory (WM) capacity that occurs during childhood and early adulthood. Functional MRI (fMRI) was used to measure brain activity in subjects between 9 and 18 years of age while they performed ..."
Abstract
-
Cited by 51 (5 self)
- Add to MetaCart
(Show Context)
& The aim of this study was to identify changes in brain activity associated with the increase in working memory (WM) capacity that occurs during childhood and early adulthood. Functional MRI (fMRI) was used to measure brain activity in subjects between 9 and 18 years of age while they performed a visuospatial WM task and a baseline task. During performance of the WM task, the older children showed higher activation of cortex in the superior frontal and intraparietal cortex than the younger children did. A second analysis found that WM capacity was significantly correlated with brain activity in the same regions. These frontal and parietal areas are known to be involved in the control of attention and spatial WM. The development of the functionality in these areas may play an important role in cognitive development during childhood. &
Sustained mnemonic response in the human middle frontal gyrus during on-line storage of spatial memoranda
- Journal of Cognitive Neuroscience
, 2002
"... & The mapping of cognitive functions to neural systems is a central goal of cognitive neuroscience. On the basis of homology with lesion and physiological studies in nonhuman primates, Brodmann’s area (BA) 46/9 in the middle frontal gyrus (MFG) has been proposed as the cortical focus for both th ..."
Abstract
-
Cited by 39 (1 self)
- Add to MetaCart
(Show Context)
& The mapping of cognitive functions to neural systems is a central goal of cognitive neuroscience. On the basis of homology with lesion and physiological studies in nonhuman primates, Brodmann’s area (BA) 46/9 in the middle frontal gyrus (MFG) has been proposed as the cortical focus for both the storage as well as processing components of working memory in the human brain, but the evidence on the segregation of these components and their exact areal localization has been inconsistent. In order to study this issue and increase the temporal resolution of functional mapping, we disambiguated the storage component of working memory from sensory and motor responses by employing functional magnetic resonance imaging (fMRI) in spatial delayed-response (DR) tasks with long delay intervals and different conditions of demand. We here show that BA 46 can support a sustained mnemonic response for as long as 24 sec in a high-demand task and the signal change in this area exceeded that in the other prefrontal areas examined. Our findings support a conservation of functional architecture between human and nonhuman primate in showing that the MFG is prominently engaged in the storage of spatial information. &
Time and cognitive load in working memory
- Journal of Experimental Psychology: Learning, Memory, & Cognition
, 2007
"... the cognitive load a given task involves is a function of the proportion of time during which it captures attention, thus impeding other attention-demanding processes. Accordingly, the present study demonstrates that the disruptive effect on concurrent maintenance of memory retrievals and response s ..."
Abstract
-
Cited by 33 (11 self)
- Add to MetaCart
(Show Context)
the cognitive load a given task involves is a function of the proportion of time during which it captures attention, thus impeding other attention-demanding processes. Accordingly, the present study demonstrates that the disruptive effect on concurrent maintenance of memory retrievals and response selections increases with their duration. Moreover, the effect on recall performance of concurrent activities does not go beyond their duration insofar as the processes are attention demanding. Finally, these effects are not modality specific, as spatial processing was found to disrupt verbal maintenance. These results suggest a sequential and time-based function of working memory in which processing and storage rely on a single and general purpose attentional resource needed to run executive processes devoted to constructing, maintaining, and modifying ephemeral representations.