Results 1 - 10
of
375
A metric for distributions with applications to image databases
, 1998
"... We introduce a new distance between two distributions that we call the Earth Mover’s Distance (EMD), which reflects the minimal amount of work that must be performed to transform one distributioninto the other by moving “distribution mass ” around. This is a special case of the transportation proble ..."
Abstract
-
Cited by 438 (6 self)
- Add to MetaCart
(Show Context)
We introduce a new distance between two distributions that we call the Earth Mover’s Distance (EMD), which reflects the minimal amount of work that must be performed to transform one distributioninto the other by moving “distribution mass ” around. This is a special case of the transportation problem from linear optimization, for which efficient algorithms are available. The EMD also allows for partial matching. When used to compare distributions that have the same overall mass, the EMD is a true metric, and has easy-to-compute lower bounds. In this paper we focus on applications to image databases, especially color and texture. We use the EMD to exhibit the structure of color-distribution and texture spaces by means of Multi-Dimensional Scaling displays. We also propose a novel approach to the problem of navigating through a collection of color images, which leads to a new paradigm for image database search. 1
Filters, Random Fields and Maximum Entropy . . .
- INTERNATIONAL JOURNAL OF COMPUTER VISION
, 1998
"... This article presents a statistical theory for texture modeling. This theory combines filtering theory and Markov random field modeling through the maximum entropy principle, and interprets and clarifies many previous concepts and methods for texture analysis and synthesis from a unified point of vi ..."
Abstract
-
Cited by 233 (16 self)
- Add to MetaCart
This article presents a statistical theory for texture modeling. This theory combines filtering theory and Markov random field modeling through the maximum entropy principle, and interprets and clarifies many previous concepts and methods for texture analysis and synthesis from a unified point of view. Our theory characterizes the ensemble of images I with the same texture appearance by a probability distribution f (I) on a random field, and the objective of texture modeling is to make inference about f (I), given a set of observed texture examples. In our theory, texture modeling consists of two steps. (1) A set of filters is selected from a general filter bank to capture features of the texture, these filters are applied to observed texture images, and the histograms of the filtered images are extracted. These histograms are estimates of the marginal distributions of f (I). This step is called feature extraction. (2) The maximum entropy principle is employed to derive a distribution p(I), which is restricted to have the same marginal distributions as those in (1). This p(I) is considered as an estimate of f (I). This step is called feature fusion. A stepwise algorithm is proposed to choose filters from a general filter bank. The resulting model, called FRAME (Filters, Random fields And Maximum Entropy), is a Markov random field (MRF) model, but with a much enriched vocabulary and hence much stronger descriptive ability than the previous MRF models used for texture modeling. Gibbs sampler is adopted to synthesize texture images by drawing typical samples from p(I), thus the model is verified by seeing whether the synthesized texture images have similar visual appearances
Personal Identification Based on Iris Texture Analysis
- IEEE Transactions on Pattern Analysis and Machine Intelligence
, 2003
"... With an increasing emphasis on security, automated personal identification based on biometrics has been receiving extensive attention over the past decade. Iris recognition, as an emerging biometric recognition approach, is becoming a very active topic in both research and practical applications. ..."
Abstract
-
Cited by 168 (11 self)
- Add to MetaCart
(Show Context)
With an increasing emphasis on security, automated personal identification based on biometrics has been receiving extensive attention over the past decade. Iris recognition, as an emerging biometric recognition approach, is becoming a very active topic in both research and practical applications. In general, a typical iris recognition system includes iris imaging, iris liveness detection, and recognition. This paper focuses on the last issue and describes a new scheme for iris recognition from an image sequence. We first assess the quality of each image in the input sequence and select a clear iris image from such a sequence for subsequent recognition. A bank of spatial filters, whose kernels are suitable for iris recognition, is then used to capture local characteristics of the iris so as to produce discriminating texture features. Experimental results show that the proposed method has an encouraging performance. In particular, a comparative study of existing methods for iris recognition is conducted on an iris image database including 2,255 sequences from 213 subjects. Conclusions based on such a comparison using a nonparametric statistical method (the bootstrap) provide useful information for further research.
Recognition of Human Iris Patterns for Biometric Identification
, 2003
"... A biometric system provides automatic identification of an individual based on a unique feature or characteristic possessed by the individual. Iris recognition is regarded as the most reliable and accurate biometric identification system available. Most commercial iris recognition systems use patent ..."
Abstract
-
Cited by 151 (0 self)
- Add to MetaCart
(Show Context)
A biometric system provides automatic identification of an individual based on a unique feature or characteristic possessed by the individual. Iris recognition is regarded as the most reliable and accurate biometric identification system available. Most commercial iris recognition systems use patented algorithms developed by Daugman, and these algorithms are able to produce perfect recognition rates. However, published results have usually been produced under favourable conditions, and there have been no independent trials of the technology. The work presented in this thesis involved developing an ‘open-source ’ iris recognition system in order to verify both the uniqueness of the human iris and also its performance as a biometric. For determining the recognition performance of the system two databases of digitised greyscale eye images were used. The iris recognition system consists of an automatic segmentation system that is based on the Hough transform, and is able to localise the circular iris and pupil region, occluding eyelids and eyelashes, and reflections. The extracted iris region was then
Probabilistic framework for the adaptation and comparison of image codes
- J. OPT. SOC. AM. A
, 1999
"... We apply a Bayesian method for inferring an optimal basis to the problem of finding efficient image codes for natural scenes. The basis functions learned by the algorithm are oriented and localized in both space and frequency, bearing a resemblance to two-dimensional Gabor functions, and increasing ..."
Abstract
-
Cited by 140 (10 self)
- Add to MetaCart
(Show Context)
We apply a Bayesian method for inferring an optimal basis to the problem of finding efficient image codes for natural scenes. The basis functions learned by the algorithm are oriented and localized in both space and frequency, bearing a resemblance to two-dimensional Gabor functions, and increasing the number of basis functions results in a greater sampling density in position, orientation, and scale. These properties also resemble the spatial receptive fields of neurons in the primary visual cortex of mammals, suggesting that the receptive-field structure of these neurons can be accounted for by a general efficient coding principle. The probabilistic framework provides a method for comparing the coding efficiency of different bases objectively by calculating their probability given the observed data or by measuring the entropy of the basis function coefficients. The learned bases are shown to have better coding efficiency than traditional Fourier and wavelet bases. This framework also provides a Bayesian solution to the problems of image denoising and filling in of missing pixels. We demonstrate that the results obtained by applying the learned bases to these problems are improved over those obtained with traditional techniques.
A review of curvelets and recent applications
- IEEE Signal Processing Magazine
, 2009
"... Multiresolution methods are deeply related to image processing, biological and computer vision, scientific computing, etc. The curvelet transform is a multiscale directional transform which allows an almost optimal nonadaptive sparse representation of objects with edges. It has generated increasing ..."
Abstract
-
Cited by 128 (10 self)
- Add to MetaCart
(Show Context)
Multiresolution methods are deeply related to image processing, biological and computer vision, scientific computing, etc. The curvelet transform is a multiscale directional transform which allows an almost optimal nonadaptive sparse representation of objects with edges. It has generated increasing interest in the community of applied mathematics and signal processing over the past years. In this paper, we present a review on the curvelet transform, including its history beginning from wavelets, its logical relationship to other multiresolution multidirectional methods like contourlets and shearlets, its basic theory and discrete algorithm. Further, we consider recent applications in image/video processing, seismic exploration, fluid mechanics, simulation of partial different equations, and compressed sensing.
Comparison Between Geometry-Based and Gabor-Wavelets-Based Facial Expression Recognition Using Multi-Layer Perceptron
"... In this paper, we investigate the use of two types of features extracted from face images for recognizing facial expressions. The first type is the geometric positions of a set of fiducial points on a face. The second type is a set of multi-scale and multi-orientation Gabor wavelet coefficients extr ..."
Abstract
-
Cited by 115 (3 self)
- Add to MetaCart
(Show Context)
In this paper, we investigate the use of two types of features extracted from face images for recognizing facial expressions. The first type is the geometric positions of a set of fiducial points on a face. The second type is a set of multi-scale and multi-orientation Gabor wavelet coefficients extracted from the face image at the fiducial points. They can be used either independently or jointly. The architecture we developed is based on a two-layer perceptron. The recognition performance with different types of features has been compared, which shows that Gabor wavelet coefficients are much more powerful than geometric positions. Furthermore, since the first layer of the perceptron actually performs a nonlinear reduction of the dimensionality of the feature space, we have also studied the desired number of hidden units, i.e., the appropriate dimension to represent a facial expression in order to achieve a good recognition rate. It turns out that five to seven hidden units are probably...
Images as embedding maps and minimal surfaces: Movies, color, texture, and volumetric medical images
- INT. J. COMPUT. VIS
, 2000
"... We extend the geometric framework introduced in Sochen et al. (IEEE Trans. on Image Processing, 7(3):310–318, 1998) for image enhancement. We analyze and propose enhancement techniques that selectively smooth images while preserving either the multi-channel edges or the orientation-dependent textu ..."
Abstract
-
Cited by 111 (24 self)
- Add to MetaCart
(Show Context)
We extend the geometric framework introduced in Sochen et al. (IEEE Trans. on Image Processing, 7(3):310–318, 1998) for image enhancement. We analyze and propose enhancement techniques that selectively smooth images while preserving either the multi-channel edges or the orientation-dependent texture features in them. Images are treated as manifolds in a feature-space. This geometrical interpretation lead to a general way for grey level, color, movies, volumetric medical data, and color-texture image enhancement. We first review our framework in which the Polyakov action from high-energy physics is used to develop a minimization procedure through a geometric flow for images. Here we show that the geometric flow, based on manifold volume minimization, yields a novel enhancement procedure for color images. We apply the geometric framework and the general Beltrami flow to feature-preserving denoising of images in various spaces. Next, we introduce a new method for color and texture enhancement. Motivated by Gabor’s geometric image sharpening method (Gabor, Laboratory Investigation, 14(6):801–807, 1965), we present a geometric sharpening procedure for color images with texture. It is based on inverse diffusion across the multi-channel edge, and diffusion along the edge.
Face recognition from a single image per person: A survey
- PATTERN RECOGNITION
, 2006
"... One of the main challenges faced by the current face recognition techniques lies in the difficulties of collecting samples. Fewer samples per person mean less laborious effort for collecting them, lower costs for storing and processing them. Unfortunately, many reported face recognition techniques ..."
Abstract
-
Cited by 108 (6 self)
- Add to MetaCart
(Show Context)
One of the main challenges faced by the current face recognition techniques lies in the difficulties of collecting samples. Fewer samples per person mean less laborious effort for collecting them, lower costs for storing and processing them. Unfortunately, many reported face recognition techniques rely heavily on the size and representative of training set, and most of them will suffer serious performance drop or even fail to work if only one training sample per person is available to the systems. This situation is called “one sample per person ” problem: given a stored database of faces, the goal is to identify a person from the database later in time in any different and unpredictable poses, lighting, etc from just one image. Such a task is very challenging for most current algorithms due to the extremely limited representative of training sample. Numerous techniques have been developed to attack this problem, and the purpose of this paper is to categorize and evaluate these algorithms. The prominent algorithms are described and critically analyzed. Relevant issues such as data collection, the influence of the small sample size, and system evaluation are discussed, and several promising directions for future research are also proposed in this paper.
General tensor discriminant analysis and Gabor featuresforgaitrecognition,”IEEE Trans
- Pattern Anal. Mach. Intell
, 2007
"... Abstract — The traditional image representations are not suited to conventional classification methods, such as the linear discriminant analysis (LDA), because of the under sample problem (USP): the dimensionality of the feature space is much higher than the number of training samples. Motivated by ..."
Abstract
-
Cited by 105 (11 self)
- Add to MetaCart
(Show Context)
Abstract — The traditional image representations are not suited to conventional classification methods, such as the linear discriminant analysis (LDA), because of the under sample problem (USP): the dimensionality of the feature space is much higher than the number of training samples. Motivated by the successes of the two dimensional LDA (2DLDA) for face recognition, we develop a general tensor discriminant analysis (GTDA) as a preprocessing step for LDA. The benefits of GTDA compared with existing preprocessing methods, e.g., principal component analysis (PCA) and 2DLDA, include 1) the USP is reduced in subsequent classification by, for example, LDA; 2) the discriminative information in the training tensors is preserved; and 3) GTDA provides stable recognition rates because the alternating projection optimization algorithm to obtain a solution of GTDA converges, while that of 2DLDA does not. We use human gait recognition to validate the proposed GTDA. The averaged gait images are utilized for gait representation. Given the popularity of Gabor function based image decompositions for image understanding and object recognition, we develop three different Gabor function based image representations: 1) the GaborD representation is the sum of Gabor filter responses over directions, 2) GaborS is the sum of Gabor filter responses over scales, and 3) GaborSD is the sum of