Results 1  10
of
76
Notes on Polynomially Bounded Arithmetic
"... We characterize the collapse of Buss' bounded arithmetic in terms of the provable collapse of the polynomial time hierarchy. We include also some general modeltheoretical investigations on fragments of bounded arithmetic. Contents 0 Introduction and motivation. 1 1 Preliminaries. 3 1.1 The polyno ..."
Abstract

Cited by 58 (1 self)
 Add to MetaCart
We characterize the collapse of Buss' bounded arithmetic in terms of the provable collapse of the polynomial time hierarchy. We include also some general modeltheoretical investigations on fragments of bounded arithmetic. Contents 0 Introduction and motivation. 1 1 Preliminaries. 3 1.1 The polynomially bounded hierarchy. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 4 1.2 The axioms of secondorder bounded arithmetic. : : : : : : : : : : : : : : : : : : : : : : : : : : : 5 1.3 Rudimentary functions. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 5 1.4 Other fragments. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 6 1.5 Polynomial time computable functions. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 7 1.6 Relations among fragments. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 8 1.7 Relations with Buss' bounded arithmetic. : : : :...
An application of boolean complexity to separation problems in bounded arithmetic
 Proc. London Math. Society
, 1994
"... We develop a method for establishing the independence of some Zf(a)formulas from S'2(a). In particular, we show that T'2(a) is not VZ*(a)conservative over S'2(a). We characterize the Z^definable functions of T2 as being precisely the functions definable as projections of polynomial local search ( ..."
Abstract

Cited by 54 (15 self)
 Add to MetaCart
We develop a method for establishing the independence of some Zf(a)formulas from S'2(a). In particular, we show that T'2(a) is not VZ*(a)conservative over S'2(a). We characterize the Z^definable functions of T2 as being precisely the functions definable as projections of polynomial local search (PLS) problems. Although it is still an open problem whether bounded arithmetic S2 is finitely axiomatizable, considerable progress on this question has been made: S2 +1 is V2f+1conservative over T'2 [3], but it is not V2!f+2conservative unless £f+2 = Ylf+2 [10], and in addition, T2 is not VZf+1conservative over S'2 unless LogSpace s? = Af+1 [8]. In particular, S2 is not finitely axiomatizable provided that the polynomialtime hierarchy does not collapse [10]. For the theory S2(a) these results imply (with some additional arguments) absolute results: S'2 + (a) is V2f+,(a)conservative but not VZf+2(a)conservative over T'2(a), and T'2(a) is not VZf+i(c*)conservative over S'2(a). Here a represents a new uninterpreted predicate symbol adjoined to the language of arithmetic which may be used in induction formulas; from a computer science perspective, a represents an oracle. In this paper we pursue this line of investigation further by showing that T'2(a) is also not V2f(a)conservative over S'2(a). This was known for / = 1, 2 by [9,17] (see also [2]), and our present proof uses a version of the pigeonhole principle similar to the arguments in [2,9]. Perhaps more importantly, we formulate a general method (Theorem 2.6) which can be used to show the unprovability of other 2f(a)formulas from S'2(a). Our methods are analogous in spirit to the proof strategy of [8]: prove a witnessing theorem to show that provability of a Zf+1(a)formula A in S'2(a) implies that it is witnessed by a function of certain complexity and then employ techniques of boolean complexity to construct an oracle a such that the formula A cannot be witnessed by a function of the prescribed complexity. Our formula A shall be 2f(a) and thus we can use the original witnessing theorem of [2]. The boolean complexity used is the same as in [8], namely Hastad's switching lemmas [6].
Bounded Arithmetic and Lower Bounds in Boolean Complexity
 Feasible Mathematics II
, 1993
"... We study the question of provability of lower bounds on the complexity of explicitly given Boolean functions in weak fragments of Peano Arithmetic. To that end, we analyze what is the right fragment capturing the kind of techniques existing in Boolean complexity at present. We give both formal and i ..."
Abstract

Cited by 46 (5 self)
 Add to MetaCart
We study the question of provability of lower bounds on the complexity of explicitly given Boolean functions in weak fragments of Peano Arithmetic. To that end, we analyze what is the right fragment capturing the kind of techniques existing in Boolean complexity at present. We give both formal and informal arguments supporting the claim that a conceivable answer is V 1 (which, in view of RSUV isomorphism, is equivalent to S 2 ), although some major results about the complexity of Boolean functions can be proved in (presumably) weaker subsystems like U 1 . As a byproduct of this analysis, we give a more constructive version of the proof of Hastad Switching Lemma which probably is interesting in its own right.
On the strength of Ramsey’s Theorem for pairs
 Journal of Symbolic Logic
, 2001
"... Abstract. We study the proof–theoretic strength and effective content denote Ramof the infinite form of Ramsey’s theorem for pairs. Let RT n k sey’s theorem for k–colorings of n–element sets, and let RT n < ∞ denote (∀k)RTn k. Our main result on computability is: For any n ≥ 2 and any computable (r ..."
Abstract

Cited by 41 (9 self)
 Add to MetaCart
Abstract. We study the proof–theoretic strength and effective content denote Ramof the infinite form of Ramsey’s theorem for pairs. Let RT n k sey’s theorem for k–colorings of n–element sets, and let RT n < ∞ denote (∀k)RTn k. Our main result on computability is: For any n ≥ 2 and any computable (recursive) k–coloring of the n–element sets of natural numbers, there is an infinite homogeneous set X with X ′ ′ ≤T 0 (n). Let I�n and B�n denote the �n induction and bounding schemes, respectively. Adapting the case n = 2 of the above result (where X is low2) to models is conservative of arithmetic enables us to show that RCA0 + I �2 + RT2 2 over RCA0 + I �2 for �1 1 statements and that RCA0 + I �3 + RT2 < ∞ is �1 1conservative over RCA0 + I �3. It follows that RCA0 + RT2 2 does not imply B �3. In contrast, J. Hirst showed that RCA0 + RT2 < ∞ does imply B �3, and we include a proof of a slightly strengthened version of this result. It follows that RT2 < ∞ is strictly stronger than RT2 2 over RC A0. 1.
Interpretability logic
 Mathematical Logic, Proceedings of the 1988 Heyting Conference
, 1990
"... Interpretations are much used in metamathematics. The first application that comes to mind is their use in reductive Hilbertstyle programs. Think of the kind of program proposed by Simpson, Feferman or Nelson (see Simpson[1988], Feferman[1988], Nelson[1986]). Here they serve to compare the strength ..."
Abstract

Cited by 32 (9 self)
 Add to MetaCart
Interpretations are much used in metamathematics. The first application that comes to mind is their use in reductive Hilbertstyle programs. Think of the kind of program proposed by Simpson, Feferman or Nelson (see Simpson[1988], Feferman[1988], Nelson[1986]). Here they serve to compare the strength of theories, or better to prove
Theories for Complexity Classes and their Propositional Translations
 Complexity of computations and proofs
, 2004
"... We present in a uniform manner simple twosorted theories corresponding to each of eight complexity classes between AC and P. We present simple translations between these theories and systems of the quanti ed propositional calculus. ..."
Abstract

Cited by 30 (7 self)
 Add to MetaCart
We present in a uniform manner simple twosorted theories corresponding to each of eight complexity classes between AC and P. We present simple translations between these theories and systems of the quanti ed propositional calculus.
Lower Bounds for Propositional Proofs and Independence Results in Bounded Arithmetic
 Proceedings of the 23rd ICALP, Lecture Notes in Computer Science
, 1996
"... . We begin with a highly informal discussion of the role played by Bounded Arithmetic and propositional proof systems in the reasoning about the world of feasible computations. Then we survey some known lower bounds on the complexity of proofs in various propositional proof systems, paying special a ..."
Abstract

Cited by 27 (10 self)
 Add to MetaCart
. We begin with a highly informal discussion of the role played by Bounded Arithmetic and propositional proof systems in the reasoning about the world of feasible computations. Then we survey some known lower bounds on the complexity of proofs in various propositional proof systems, paying special attention to recent attempts on reducing such bounds to some purely complexity results or assumptions. As one of the main motivations for this research we discuss provability of extremely important propositional formulae that express hardness of explicit Boolean functions with respect to various nonuniform computational models. 1. Propositional proofs as feasible proofs of plain statements Interesting and viable logical theories do not appear as result of sheer speculation. Conversely, they attempt to summarize and capture a certain amount of reasoning of a certain style about a certain class of objects that had existed in the math community before the mathematical logics entered the stage....
The complexity of propositional proofs
 Bulletin of Symbolic Logic
"... Abstract. Propositional proof complexity is the study of the sizes of propositional proofs, and more generally, the resources necessary to certify propositional tautologies. Questions about proof sizes have connections with computational complexity, theories of arithmetic, and satisfiability algorit ..."
Abstract

Cited by 21 (0 self)
 Add to MetaCart
Abstract. Propositional proof complexity is the study of the sizes of propositional proofs, and more generally, the resources necessary to certify propositional tautologies. Questions about proof sizes have connections with computational complexity, theories of arithmetic, and satisfiability algorithms. This is article includes a broad survey of the field, and a technical exposition of some recently developed techniques for proving lower bounds on proof sizes. Contents
Number theory and elementary arithmetic
 Philosophia Mathematica
, 2003
"... Elementary arithmetic (also known as “elementary function arithmetic”) is a fragment of firstorder arithmetic so weak that it cannot prove the totality of an iterated exponential function. Surprisingly, however, the theory turns out to be remarkably robust. I will discuss formal results that show t ..."
Abstract

Cited by 17 (5 self)
 Add to MetaCart
Elementary arithmetic (also known as “elementary function arithmetic”) is a fragment of firstorder arithmetic so weak that it cannot prove the totality of an iterated exponential function. Surprisingly, however, the theory turns out to be remarkably robust. I will discuss formal results that show that many theorems of number theory and combinatorics are derivable in elementary arithmetic, and try to place these results in a broader philosophical context. 1
On Herbrand Skeletons
, 1995
"... . Herbrand's theorem plays an important role both in proof theory and in computer science. Given a Herbrand skeleton, which is basically a number specifying the count of disjunctions of the matrix, we would like to get a computable bound on the size of terms which make the disjunction into a qua ..."
Abstract

Cited by 12 (0 self)
 Add to MetaCart
. Herbrand's theorem plays an important role both in proof theory and in computer science. Given a Herbrand skeleton, which is basically a number specifying the count of disjunctions of the matrix, we would like to get a computable bound on the size of terms which make the disjunction into a quasitautology. This is an important problem in logic, specifically in the complexity of proofs. In computer science, specifically in automated theorem proving, one hopes for an algorithm which avoids the guesses of existential substitution axioms involved in proving a theorem. Herbrand's theorem forms the very basis of automated theorem proving where for a given number n we would like to have an algorithm which finds the terms in the n disjunctions of matrices solely from the shape of the matrix. The main result of this paper is that both problems have negative solutions. 1 Introduction By the theorem of Herbrand we have for a quantifierfree OE: j= 9 x OE( x) iff j= OE( a 1 ) OE( ...