Results 1  10
of
41
Finding shortest nonseparating and noncontractible cycles for topologically embedded graphs
 Discrete Comput. Geom
, 2005
"... We present an algorithm for finding shortest surface nonseparating cycles in graphs embedded on surfaces in O(g 3/2 V 3/2 log V + g 5/2 V 1/2) time, where V is the number of vertices in the graph and g is the genus of the surface. If g = o(V 1/3−ε), this represents a considerable improvement over p ..."
Abstract

Cited by 43 (12 self)
 Add to MetaCart
We present an algorithm for finding shortest surface nonseparating cycles in graphs embedded on surfaces in O(g 3/2 V 3/2 log V + g 5/2 V 1/2) time, where V is the number of vertices in the graph and g is the genus of the surface. If g = o(V 1/3−ε), this represents a considerable improvement over previous results by Thomassen, and Erickson and HarPeled. We also give algorithms to find a shortest noncontractible cycle in O(g O(g) V 3/2) time, which improves previous results for fixed genus. This result can be applied for computing the (nonseparating) facewidth of embedded graphs. Using similar ideas we provide the first nearlinear running time algorithm for computing the facewidth of a graph embedded on the projective plane, and an algorithm to find the facewidth of embedded toroidal graphs in O(V 5/4 log V) time. 1
Minimum Cuts and Shortest Homologous Cycles
 SYMPOSIUM ON COMPUTATIONAL GEOMETRY
, 2009
"... We describe the first algorithms to compute minimum cuts in surfaceembedded graphs in nearlinear time. Given an undirected graph embedded on an orientable surface of genus g, with two specified vertices s and t, our algorithm computes a minimum (s, t)cut in g O(g) n log n time. Except for the spec ..."
Abstract

Cited by 20 (7 self)
 Add to MetaCart
We describe the first algorithms to compute minimum cuts in surfaceembedded graphs in nearlinear time. Given an undirected graph embedded on an orientable surface of genus g, with two specified vertices s and t, our algorithm computes a minimum (s, t)cut in g O(g) n log n time. Except for the special case of planar graphs, for which O(n log n)time algorithms have been known for more than 20 years, the best previous time bounds for finding minimum cuts in embedded graphs follow from algorithms for general sparse graphs. A slight generalization of our minimumcut algorithm computes a minimumcost subgraph in every Z2homology class. We also prove that finding a minimumcost subgraph homologous to a single input cycle is NPhard.
The directed planar reachability problem
 In Proc. 25th annual Conference on Foundations of Software Technology and Theoretical Computer Science (FST&TCS), number 1373 in Lecture Notes in Computer Science
, 2005
"... Abstract. We investigate the stconnectivity problem for directed planar graphs, which is hard for L and is contained in NL but is not known to be complete. We show that this problem is logspacereducible to its complement, and we show that the problem of searching graphs of genus 1 reduces to the ..."
Abstract

Cited by 18 (7 self)
 Add to MetaCart
Abstract. We investigate the stconnectivity problem for directed planar graphs, which is hard for L and is contained in NL but is not known to be complete. We show that this problem is logspacereducible to its complement, and we show that the problem of searching graphs of genus 1 reduces to the planar case. We also consider a previouslystudied subclass of planar graphs known as grid graphs. We show that the directed planar stconnectivity problem reduces to the reachability problem for directed grid graphs. A special case of the gridgraph reachability problem where no edges are directed from right to left is known as the “acyclic grid graph reachability problem”. We show that this problem lies in the complexity class UL. 1
Generalized duality for graphs on surfaces and the signed BollobasRiordan polynomial
 J. Combin. Theory Ser. B
"... Abstract. We generalize the natural duality of graphs embedded into a surface to a duality with respect to a subset of edges. The dual graph might be embedded into a different surface. We prove a relation between the signed BollobásRiordan polynomials of dual graphs. This relation unifies various r ..."
Abstract

Cited by 14 (0 self)
 Add to MetaCart
Abstract. We generalize the natural duality of graphs embedded into a surface to a duality with respect to a subset of edges. The dual graph might be embedded into a different surface. We prove a relation between the signed BollobásRiordan polynomials of dual graphs. This relation unifies various recent results expressing the Jones polynomial of links as specializations of the BollobásRiordan polynomials.
Minimum Cuts and Shortest NonSeparating Cycles via Homology Covers
 SYMPOSIUM ON DISCRETE ALGORITHMS
, 2011
"... Let G be a directed graph with weighted edges, embedded on a surface of genus g with b boundaries. We describe an algorithm to compute the shortest directed cycle in G in any given � 2homology class in 2 O(g+b) n log n time; this problem is NPhard even for undirected graphs. We also present two ap ..."
Abstract

Cited by 10 (4 self)
 Add to MetaCart
Let G be a directed graph with weighted edges, embedded on a surface of genus g with b boundaries. We describe an algorithm to compute the shortest directed cycle in G in any given � 2homology class in 2 O(g+b) n log n time; this problem is NPhard even for undirected graphs. We also present two applications of our algorithm. The first is an algorithm to compute the shortest nonseparating directed cycle in G in 2 O(g) n log n time, improving the recent algorithm of Cabello et al. [SOCG 2010] for all g = o(log n). The second is a combinatorial algorithm to compute minimum (s, t)cuts in undirected surface graphs in 2 O(g) n log n time, improving an algorithm of Chambers et al. [SOCG 2009] for all positive g. Unlike earlier algorithms for surface graphs that construct and search finite portions of the universal cover, our algorithms use another canonical covering space, called the Z 2homology cover.
Computing the shortest essential cycle
, 2008
"... An essential cycle on a surface is a simple cycle that cannot be continuously deformed to a point or a single boundary. We describe algorithms to compute the shortest essential cycle in an orientable combinatorial surface in O(n 2 log n) time, or in O(n log n) time when both the genus and number of ..."
Abstract

Cited by 8 (4 self)
 Add to MetaCart
An essential cycle on a surface is a simple cycle that cannot be continuously deformed to a point or a single boundary. We describe algorithms to compute the shortest essential cycle in an orientable combinatorial surface in O(n 2 log n) time, or in O(n log n) time when both the genus and number of boundaries are fixed. Our result corrects an error in a paper of Erickson and HarPeled.
Multiplesource shortest paths in embedded graphs
, 2012
"... Let G be a directed graph with n vertices and nonnegative weights in its directed edges, embedded on a surface of genus g, and let f be an arbitrary face of G. We describe an algorithm to preprocess the graph in O(gn log n) time, so that the shortestpath distance from any vertex on the boundary of ..."
Abstract

Cited by 7 (5 self)
 Add to MetaCart
Let G be a directed graph with n vertices and nonnegative weights in its directed edges, embedded on a surface of genus g, and let f be an arbitrary face of G. We describe an algorithm to preprocess the graph in O(gn log n) time, so that the shortestpath distance from any vertex on the boundary of f to any other vertex in G can be retrieved in O(log n) time. Our result directly generalizes the O(n log n)time algorithm of Klein [Multiplesource shortest paths in planar graphs. In Proc. 16th Ann. ACMSIAM Symp. Discrete Algorithms, 2005] for multiplesource shortest paths in planar graphs. Intuitively, our preprocessing algorithm maintains a shortestpath tree as its source point moves continuously around the boundary of f. As an application of our algorithm, we describe algorithms to compute a shortest noncontractible or nonseparating cycle in embedded, undirected graphs in O(g² n log n) time.
Disjoint paths, planarizing cycles, and spanning walks
 Transactions of the American Mathematical Society
, 1997
"... Abstract. We study the existence of certain disjoint paths in planar graphs and generalize a theorem of Thomassen on planarizing cycles in surfaces. Results are used to prove that every 5connected triangulation of a surface with sufficiently large representativity is hamiltonian, thus verifying a c ..."
Abstract

Cited by 7 (3 self)
 Add to MetaCart
Abstract. We study the existence of certain disjoint paths in planar graphs and generalize a theorem of Thomassen on planarizing cycles in surfaces. Results are used to prove that every 5connected triangulation of a surface with sufficiently large representativity is hamiltonian, thus verifying a conjecture of Thomassen. We also obtain results about spanning walks in graphs embedded in a surface with large representativity. 1.
Bounded Degree Spanning Trees
, 1997
"... f Garey, Johnson, and Tarjan [GJT76] (it is N P complete to decide, if a 3connected 3regular planar graph has a Hamiltonian path/cycle), and Yannakakis [Yan81] (it is N P complete to decide, if a graph has a connected spanning subgraph of maximum degree r, r 2). To our knowledge there is no res ..."
Abstract

Cited by 6 (0 self)
 Add to MetaCart
f Garey, Johnson, and Tarjan [GJT76] (it is N P complete to decide, if a 3connected 3regular planar graph has a Hamiltonian path/cycle), and Yannakakis [Yan81] (it is N P complete to decide, if a graph has a connected spanning subgraph of maximum degree r, r 2). To our knowledge there is no result for 2connected planar graphs. For general graphs the starting question was: Is it N P complete to decide, if a kconnected kregular graph, k ? 2, has a Hamiltonian path/cycle? To our knowledge there is no such result. Our conjecture was "yes", but how to prove it? After modifying the proof of Garey, Johnson, and Tarjan we were able to prove the result for every k ? 2, k 6= 5. The paper of Meredith [Mer73] helped us to improve and extend our proof. Furthermore the paper of Furer and Raghava